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Abstract

We will assess whether synthetic differential geometry can offer a foundation for mathe-
matics, and furthermore whether such a foundation can be autonomous with respect to the
current orthodox set-theoretic foundation. We will answer both questions in the affirma-
tive, although we will see that the autonomy of the two foundations is not straightforward
and that our conclusions lend credence to a form of mathematical pluralism.
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Chapter 1

Introduction

The need for secure foundations for mathematics became a pressing issue at the turn of

the 20th century when various mathematical paradoxes where discovered, the most famous

being Russell’s paradox in 1901, although the Burali-Forti paradox was discovered earlier

in 1897. Previously, mathematics had been considered by its very nature to be consistent,

and any concerns one might have had with it were thought to be purely philosophical,

not mathematical. Investigations into the foundations of mathematics had been largely

undertaken by philosophers, or mathematicians wearing philosophical hats, who wished to

explain the apparent absoluteness and a priori nature of mathematics, as well as other phe-

nomena, such as the enormous power of its application.1 But now that inconsistencies had

been found within mathematics itself, mathematicians, qua mathematics, were compelled

to enter this debate to ensure that their subject did not collapse due to logically unstable

foundations. This influx of mathematical input took the discussion in a new direction.

Whereas the questions previously being asked were of the sort ‘What are mathematical

objects?’ and ‘How can we have knowledge of mathematics?’, mathematicians asked new

questions: ‘Which premises contradict each other?’ and ‘How can we couch mathematical

propositions in an entirely rigorous setting?’2

The solution proposed to this foundational problem was axiomatic set theory, which

has proven to be both a successful foundation for mathematics as well as a fruitful area of
1 These philosophical enquiries into the metaphysics and epistemology of mathematics go back to at

least Plato (see Chapters VII & VIII of the Republic, for example) and carry on today.
2 This last question had in fact been asked earlier with regard to infinitesimals, which we shall discuss

in §4.1.2.
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mathematical research in itself. The details of this theory will be explained in Chapter 3,

but the idea is that one takes the fundamental objects of mathematics to be sets and spec-

ifies a rigorous theory of these sets to ensure consistency and mathematical power. In this

essay we shall examine a proposed alternative foundational theory, synthetic differential

geometry (henceforth ‘SDG’).

Now, one might wonder why we would want to go to the effort of examining SDG as

a foundation for mathematics, as we have one already in the form of set theory. Well, the

value comes from the different concepts involved. Set theory is by its nature discrete. For

example, in set theory, one defines the real numbers R as a set of discrete points.3 But what

if we wish to start from a different concept, say that of the continuous? Indeed, it has only

been for the past hundred years or so that the idea of a continuum being made up entirely

from points has been the orthodoxy in mathematics. Previously most mathematicians

considered a continuum to be a cohesive whole which could not be made up (entirely)

of points, since how can a continuum, an entity with extension, be made up from points,

entities without extension? This cohesive view of the continuum is one of the key concepts

upon which SDG is based. By investigating SDG as a foundation for mathematics, we

will learn more about the role of conceptual bases in mathematics and thus more about

mathematics generally. We will see that set theory is just one possible starting point in

mathematics and that different approaches to the foundations of mathematics are fruitful

both philosophically and mathematically.

I have two theses. My primary thesis is that SDG can provide a foundation for math-

ematics autonomous from that provided by set theory. We shall start by outlining criteria

a theory must meet in order to provide an autonomous foundation for mathematics in

Chapter 2, which will facilitate our subsequent discussion. We shall then describe and

investigate set theory and SDG as foundations for mathematics in Chapters 3 and 4 re-

spectively, and in Chapter 5 we shall look at the autonomy of SDG from set theory.

My secondary thesis is that my primary thesis lends credence to a form of mathematical

pluralism; this will be the topic of Chapter 6.

Before we move on to the next chapter, we need to make two remarks. The first regards

ontology. As we mentioned earlier, the question of the metaphysics of mathematics is an
3 See chapter 9 of [11] for a detailed demonstration of the set-theoretic construction of the reals.
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age-old one that dates back to at least the ancient Greeks. However, in this essay we shall

deal with this question only in passing, not because it is uninteresting – far from it! – but

simply because we do not have room to address it fully. So, when discussing a foundational

theory, we shall consider things such as its mathematical power and the concepts behind

it,4 but we will not consider the metaphysics of the theory. So, for example, when we

discuss set theory, we will consider the concepts underlying it and examine different notions

of sets, but we shall avoid the debate between platonists, intuitionists, formalists, and other

philosophical schools regarding the ontological nature of sets: whether sets exist in some

mathematical “heaven” or are merely creations of humanity’s intellect will not concern

us. As such, we shall talk of a foundation for mathematics, rather than the foundation of

mathematics, so to remain ontologically neutral (if such a thing is possible). I do think

the metaphysical consequences of our conclusions, especially those of Chapter 6, would

make a good topic of investigation, but we will have to leave that for another day.

Our second remark concerns prerequisites. The nature of the subject matter of this

essay necessitates technical exposition. As such, knowledge of elementary mathematical

logic and undergraduate algebra on the part of the reader is essential. Further knowledge of

set theory, category theory, topology, and real analysis will very much benefit the reader’s

understanding of our discussion, but I shall endeavour to explain the concepts involved in

such a way that the philosophically salient notions can (at least partially) be understood

by those unfamiliar with these areas. I will also provide references to texts that cover the

technical material in more detail and depth.

4 We will completely bracket the question of the metaphysical nature of a concept.
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Chapter 2

Foundations for mathematics

In this chapter we shall outline two sets of criteria. The first will consist of conditions

for a theory to provide a foundation for mathematics, which we shall present in §2.1, and

the second will consist of conditions for a theory to provide an autonomous foundation for

mathematics, which we shall present in §2.2. This second set of criteria is taken from [20].

These sets of criteria will provide a framework for our later discussion of set theory and

SDG as autonomous foundations for mathematics.

Before we embark on the main topic of this chapter, a couple of remarks are in order.

The first regards the nature of a theory. In the following two sections, we shall make

generalised references to theories. But what do we mean by a theory? Since we are

discussing foundations, we cannot simply restrict our attention to formal theories, such as

Peano Arithmetic or the theory of complete ordered fields, since the definition of a formula

in a formal theory requires a recursive definition, which in turn requires a foundation –

you can’t build a house from the first floor up. Thus we must deal with informal theories,

although such an informal theory may have a formal component. We we will also allow a

theory to have a philosophical component, say in the form of a conceptual basis. We also

of course want a theory to be consistent.1 So, a rough characterisation is this: by a theory,

we shall mean a collection of consistent mathematical and philosophical propositions, some

possibly couched in a formal way. We will not attempt to make this definition any more

precise, which brings us to our second remark.
1 In light of Gödel’s second incompleteness theorem, (knowledge of) the consistency of (the formal

component of) a theory is a non-trivial matter, but for the sake of brevity we shall bracket this issue.
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The investigation of what it takes for a theory to provide a foundation for mathematics

is a difficult one in which subtleties abound. Indeed, I am sure that an entire essay, if not

a whole book, could fill its pages on this task alone. For this very reason, we shall not

attempt to formulate such a general theory. Instead, we shall outline criteria in a level of

detail that is sufficiently precise for our purposes, namely to analyse set theory and SDG

as foundations for mathematics. Thus, while some of the notions that we employ would

be quite inadequate for general application, such as our definition of theory in the previous

paragraph, they will suffice for the two examples that we shall consider.

2.1 Criteria for a foundation

Perhaps the most obvious requirement for a theory to provide a foundation for mathematics

is that of technical strength: in a proposed foundational theory we must be able to do most

(if not all) of mathematics. For what good would a theory be to the differential geometer

if it could carry out only elementary arithmetic?

The next criterion is that the theory have an ontological or conceptual justification.2,3

As we mentioned in the previous chapter, we wish to avoid ontological questions, but a

theory should make existential assertions.4 The informal nature of this criterion makes it

difficult to pin down, but the idea is that the theory should have some sort of reasonable

and coherent ontological or conceptual basis – it must be talking about (possibly very

abstract) “stuff”.5 A theory that only classifies entities, such as group theory or category

theory,6,7 cannot provide a foundation for mathematics.8

We will make two remarks at this point. The first regards uniqueness. It may be the

case that an ontological or conceptual justification is not unique to a theory; that is, two
2 I have chosen the term ontological or conceptual justification, rather than just ontological justification,

in order to adhere to our ongoing abstinence from matters metaphysical.
3 A small note of pedantry: Unless otherwise specified, throughout this essay the word ‘or’ is used in

the inclusive sense.
4 See Part I of [9], p. 2 of [20], p. 24 of [21], and §4 of [24].
5 I use the word ‘reasonable’ to exclude dubious ontological or conceptual bases. For example, I would

not deem a theory based on unicorns, lovely as they are, to provide a reasonable basis for a foundation of
mathematics.

6 We shall describe category theory in Chapter 4.
7 I’m treading on thin ice here. By category theory I mean simply that, and not some specific category,

such as ETCS or CCAF; see the references to [20] and [24] in footnote 4 above.
8 c.f. Mayberry’s distinction between classificatory and eliminative theories in [21].
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different theories T1 and T2 may have the same conceptual or ontological basis.9 In such a

case, T1 and T2 are still justified. Such underdetermination of an ontological or conceptual

basis may be the result of different ways of proceeding from the same basis.

Our second remark regards attempts to justify a theory. There is of course a difference

between an attempt to justify a theory and a completed attempt to justify a theory.

Obviously the latter is to be aspired to, but we should bear this distinction in mind,

since our attempt to justify SDG will not be entirely complete. The degree to which an

attempted justification fails to be complete is of course the crucial factor in assessing its

justificatory merit, but the lack of a completed justification does not necessarily imply

that the theory is not conceptually justified.

Our last criterion is that of naturality, which breaks down into two subcriteria: par-

simony and pathology. A proposed foundational theory T should be parsimonious in

that it should not contain unnecessary premises. For example, if T is a theory of the

mathematical-logical kind, then parsimony would mean that its axioms are logically inde-

pendent of each other, i.e. in T one cannot prove any axiom of T from any of the other

axioms of T . This comes with a caveat: some axioms might not be independent of the

other axioms but are still permitted for reasons of presentation or necessity of definition.

The subcriterion of pathology is a negative one: a proposed foundational theory T should

not be pathological. A theory should be talking about the “stuff” of its conceptual or on-

tological basis, rather than hidden higher-level concepts or entities, such as proofs or the

theory itself, à la Isaacson ([14]). This is most easily demonstrated through an example:

Zermelo–Fraenkel set theory is not pathological, while the theory consisting of ZF plus

the axiom that (in the language of ZF) says ‘ZF is inconsistent’ is pathological.10

Let us summarise the criteria that we have discussed. For a theory T to provide a

foundation for mathematics, it must satisfy the following criteria:

(i) Technical strength: We must be able to do mathematics in T .

(ii) Ontological or conceptual justification: T must have a conceptual or ontological basis.
9 It may also be possible for the opposite to happen; that is, a single theory may have two different

justifications.
10 By Gödel’s second incompleteness theorem, ZF cannot prove its own consistency, and so this theory

is consistent (if ZF is consistent).
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(iii) Naturality: T must be parsimonious and not pathological.

Now, these criteria are perhaps not the only criteria that we should consider. For

example, one might wish to include aesthetic notions, such as the elegance of the theory,

or computational ones, such as the efficiency of the theory. However, while these are

indeed reasonable points to consider, especially if one wishes to develop a general theory

of foundations of mathematics, the criteria listed above will be sufficient for our thesis, for

they capture the issues germane to our discussion.

2.2 Criteria for autonomy

Now that we have set out criteria for a theory to provide a foundation for mathematics,

we shall outline criteria for a theory to provide a foundation for mathematics that is

autonomous from another foundational theory, i.e. for two theories to provide independent

foundations. We take these criteria from [20].

Our first criterion is that of logical autonomy. A theory T1 is logically autonomous

with respect to a theory T2 iff it is possible to formulate T1 without appealing to notions

belonging to T2.11 Exactly which notions belong to a theory is somewhat vague, but the

idea is that T1 should not use anything specific to T2. For example, the theory of groups

is logically autonomous from that of Boolean algebras, since one can formulate the former

without an appeal to the latter, while linear transformations are not logically autonomous

with respect to vector spaces, since one needs the latter to define the former.12 Notice the

asymmetry here: vector spaces are logically autonomous from linear transformations.13

The next criterion is that of epistemic autonomy.14 A theory T1 is epistemically au-

tonomous from a theory T2 iff it is possible to understand T1 without first understanding

the notions belonging to T2. For example, arithmetic is epistemically autonomous from real
11 We use the phrases ‘autonomous from’ and ‘autonomous with respect to’ interchangeably.
12 This example is taken from [9] (p. 152). Note that in [25], McLarty points out that historically the

notion of a linear transformation came before that of a vector space. Thus, in order for our example to hold,
we must restrict our attention to the modern formulations of vector spaces and linear transformations.

13 A terminological point: When we say that ‘T1 and T2 are logically autonomous’, we mean both that
T1 is logically autonomous from T2 and that T2 is logically autonomous from T1. The same goes for the
other criteria of autonomy.

14 What we refer to as epistemic autonomy is what Linnebo & Pettigrew refer to in [20] as conceptual
autonomy. We have changed the name in order to avoid confusion with the notion of conceptual or
ontological justification outlined in the previous section.
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analysis – just ask any schoolchild. The converse, however, does not hold: attempting to

learn real analysis without first understanding arithmetic would be somewhat foolhardy.15

Our final criterion is that of justificatory autonomy. A theory T1 has justificatory

autonomy with respect to a theory T2 iff it is possible to motivate and justify the claims of

T1 without appealing to those of T2. This is the hardest criterion to pin down, and will be

the one that requires the most work when we discuss the autonomy of SDG. The idea is

that the conceptual or ontological bases of T1 and T2 should be independent. For example,

arithmetic and topology have justificatory autonomy from each other, since they have

different conceptual bases, namely the natural numbers and abstract space respectively.

A few comments on this criterion of justificatory autonomy are in order.

There can be common ground between the two theories without their justificatory

autonomy being affected. For example, we shall argue that axiomatic set theory and SDG

can both use näıve set theory in their justifications and still be autonomous.

In the previous section we highlighted the distinction between an attempted and a

completed ontological or conceptual justification. The same applies for justificatory au-

tonomy: one might attempt to give a justification of T1 that is independent from T2

without providing a complete justification.

One final point to bear in mind is that while justificatory autonomy and epistemic

autonomy are related, they are distinct. For example, classical differential geometry and

the study of Riemann surfaces are (to a degree) conceptually autononous, since the former

is based on smooth structures and smooth maps between them, while the latter arises

from the study of conformal maps on the (extended) complex plane.16 However, they

are not epistemically autonomous, since one needs to understand notions from differential

geometry, such as those of a manifold and a tangent space, before one can understand

Riemann surfaces.

Let us summarise our criteria for a theory T1 to provide a foundation for mathematics

autonomous from that provided by a theory T2:

(i) Logical autonomy: T1 can be formulated without appealing to T2.
15 I wonder if New Maths was an example of this?
16 While conformal maps are smooth, they have a different conceptual starting point from the definition

of a smooth map, namely preservation of angles.
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(ii) Epistemic autonomy: T1 can be understood without first having to understand T2.

(iii) Justificatory autonomy: T1 can be justified without appealing to T2.

The above list is by no means exhaustive. There may be other criteria of autonomy

that one would wish to consider, such as historical autonomy or computational autonomy.

However, as we mentioned at the end of the previous section, while these criteria are not

complete, they will be sufficient for our purposes and will enable us to address the key

aspects of our discussion.
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Chapter 3

Set theory

In this chapter we shall discuss set theory as a foundation for mathematics. Although our

main topic of investigation in this essay is SDG, we need to study set theory in depth in

order to demonstrate that the foundation offered by SDG is autonomous from that offered

by set theory. This hard work will also help us in Chapter 6.

Our plan is as follows. We will first outline the current orthodox formulation of set

theory in §3.1 and then in §3.2 we shall apply the criteria from §2.1 to set theory. In §3.3

we will briefly consider conceptions of sets that differ from the current orthodoxy.

3.1 An outline of set theory

In this section we shall outline the current orthodoxy in set theory, namely Zermelo–

Fraenkel set theory and the cumulative hierarchy. We will go into some technical depth,

although our exposition will not be comprehensive. Such an account can be found in [15]

(my account is based upon this text).

The language of set theory is a first-order logical language with a non-logical binary

predicate symbol P, which is called the membership symbol.1 Zermelo–Fraenkel set theory

(ZFC)2 is a theory in the language of set theory, and the cumulative hierarchy is the

intended interpretation of ZFC, where P is interpreted as genuine set-membership. So

ZFC is syntactic and the cumulative hierarchy is semantic.3 But before we embark on a
1 Throughout this essay we shall take � to be a logical symbol, i.e. we shall only consider languages

with identity.
2 We’ll explain what the ‘C’ in ‘ZFC’ stands for later on.
3 The cumulative hierarchy is by no means the only model of set theory. Indeed, quite the contrary:
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description of either ZFC or the cumulative hierarchy, we need to discuss ordinals.

Ordinal numbers, or just ordinals, can be thought of as generalisations of natural

numbers. Heuristically, the idea is that you count 0, 1, 2, 3, . . . , get to infinity, and then

carry on counting. Now, prima facie, this makes absolutely no sense – Buzz Lightyear

might say ‘To infinity and beyond!’, but that’s just rhetoric, right? Well, it turns out that

one can frame this idea completely rigorously in beautiful mathematics.

Before we formally define an ordinal, let us state some elementary definitions. Let X

be a set equipped with a binary relation  . We say that   is an ordering iff the following

hold:

(i) p@x P Xqpx ¢ xq (irreflexivity);4

(ii) p@x, y P Xqpx   y Ñ y ¢ x (antisymmetry);

(iii) p@x, y, z P Xqpx   y ^ y   z Ñ x   zq (transitivity).5

We say that   is a well-ordering iff the above conditions hold and

p@S � XqpDx P Sqp@y P Sqpx   y _ x � yq.6

We can now define an ordinal as a transitive set that is well-ordered by membership;7

that is, an ordinal is a transitive set X such that P satisfies the conditions on   given above.

Ordinals are usually denoted using lower-case Greek letters, and P is usually denoted by

  when in reference to ordinals (in order to highlight the ordering).

But how does this formal definition reflect the heuristic one given earlier of counting

past infinity? Well, firstly, we can use ordinals to do arithmetic, for the finite ordinals turn

out to model the natural numbers. This is achieved by defining 0 as the empty set, which

is an ordinal, and n � 1 as the set of the previous n ordinals, which is itself an ordinal;8

the study of models of ZFC is an active area of mathematical research.
4 ‘a ¢ b’ is an abbreviation for  pa   bq.
5 Notice that irreflexivity and transitivity together imply antisymmetry. We state antisymmetry sep-

arately for clarity.
6 Notice the inherently second-order nature of this statement, since it requires quantification over

subsets S of X. We shall discuss this later.
7 A set X is said to be transitive iff every element of X is also a subset of X, i.e. x P X ñ x � X.

This should not be confused with the transitivity of an ordering.
8 I am skirting over the proofs and technical subtleties behind this construction; see Exercises 1.2–1.9

in chapter 1 and chapter 2 of [15] for an upliftingly transparent presentation.

11



that is:

0 :� ∅, n� 1 :� t0, 1, 2, . . . , nu.9

Okay, so we now have a way of doing ordinary arithmetic in the ordinals, but how do

we count to infinity? The trick is to consider the finite ordinals together as a set, which

we denote ω. As the lower-case Greek lettering suggests, ω is an ordinal. (This is not

difficult to show: the reader might like to try it for themselves.) One then defines ω � 1

as the set ωY tωu and ω� pn� 1q as the set ω� nY tω� nu. One then considers the set

of all these ordinals to get to ω � 2, and so forth.

Now that we have a (rough) idea of what the ordinals are, we can define the cumulative

hierarchy, which is denoted V . The first stage in the cumulative hierarchy, V0, is the empty

set ∅. The next stage, V1, is the power set (the set of all subsets) of the empty set, Pp∅q.

V2 is then the power set of this set, PpPp∅qq, and so on. We can write this recursively as

V0 :� ∅, Vα�1 :� PpVαq.

This covers the finite stages of the cumulative hierarchy. Before we move on to the

infinite stages, we need two definitions. A successor ordinal is an ordinal of the form

α � 1 (where α is an ordinal). So 1, 2, 3, . . . and ω � 1, ω � 2, ω � 3, . . . are examples of

successor ordinals. A limit ordinal is an ordinal that is neither ∅ nor a successor ordinal.

So ω, ω � 2, ω � 3, . . . are examples of limit ordinals. For a limit ordinal α, we define Vα as

the union of all the previous Vγ ’s:

Vα :�
¤
γ α

Vγ .

We can now define the cumulative hierarchy as a whole. Let On denote the class10 of

all ordinals. Then we define the cumulative hierarchy, to be

V :�
¤

αPOn

Vα.

We can sketch the cumulative hierarchy pictographically: see Figure 3.1. The ordinals,
9 Notice that this is equivalent to defining n� 1 as the set nY tnu.

10 We shall explain the distinction between sets and classes shortly.
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Figure 3.1: A sketch of the cumulative hierarchy

indicated by the vertical line, form the “backbone” of V ,11 and as we go up the ordinals

the corresponding Vα’s get larger and so the diagram gets wider.

The cumulative hierarchy is the picture behind ZFC. In ZFC, under this intended

interpretation,12 to exist is to be a set in the cumulative hierarchy, i.e. @ and D quantify

over V . The axioms of ZFC are ones that reflect this conception of sets.

The axioms can be grouped into two broad camps: those concerning the iterative

conception of sets and those concerning the size of sets. There is also one straggler, the

Axiom of Choice, which we shall deal with last.

The axioms concerning the iterative conception of sets are the Axiom of Power Set,

the Axiom of Union, the Axiom of Pairing, the Axiom of Extensionality, the Axiom of

Regularity, and the Axiom Schema of Separation. We shall cover them in that order.

The Axiom of Power Set says that if a set exists, then its power set exists; formally:

p@xqpDyqp@zqpz P y Ø p@upu P z Ñ u P xqqq.

This very much reflects the cumulative hierarchy, since the operation of power set is a key

tool in constructing it.13

11 Notice that α P Vα�1 for every ordinal α.
12 There are of course models of ZFC that are not isomorphic to V (c.f. footnote 3 above).
13 A general note is appropriate at this point. My use of verbs such as ‘to construct’ is not meant

to have any philosophical implications; I use them simply for grammatical ease. I am not advocating a
constructivist ontology, nor a platonic one, nor any other sort for that matter. As we said in Chapter 1,
we will avoid metaphysical questions.

13



Notice that the Axiom of Power Set builds higher-order notions into ZFC (c.f. footnote

6), since it enables one to quantify over collections of sets.14 We shall discuss this in the

next section when we look at pathology.

The Axiom of Union asserts the existence of the union of any set; formally:

p@xqpDyqp@zqpz P y Ø ppDuqpu P x^ z P uqq.

This again reflects V , since we used unions to define Vα for limit ordinals.

The Axiom of Pairing says that for any sets x and y, the set tx, yu exists; formally:

p@xqp@yqpDzqpp@uqpu P z Ø u � x_ u � yq.

This axiom is crucial technically, since (as we shall see) it allows one to construct ordered

pairs. It also allows one to define the operation x Y y :�
�
tx, yu, which is crucial in

defining the ordinals, and it seems quite reasonable intuitively: surely given two sets we

can consider them as a pair? But how is it justified by the cumulative hierarchy? The

argument is as follows. Let a, b P V . Then a P Vα for some α and b P Vβ for some

β. Without loss of generality, assume that α ¤ β.15 Then Vα � Vβ (by the iterative

definition of the cumulative hierarchy). Thus a P Vβ and hence ta, bu � Vβ. Therefore

ta, bu P PpVβq � Vβ�1. So we are done.

The Axiom of Extensionality states that a set is completely defined by its members;

formally:

p@xqp@yqppp@zqpz P x Ø z P yqq Ñ x � yq.16

The Axiom of Extensionality certainly fits the iterative conception of sets, where sets are

built from the bottom up and thus are entirely specified by their members. Indeed, such

an axiom might initially seem obvious – how else could sets be built? – but in §3.3 we

shall consider a conception of sets that is not extensional.

The Axiom of Regularity (or the Axiom of Foundation) states that every set has a
14 In first-order Peano Arithmetic, for example, one can only quantifier over numbers; one cannot

quantify over sets of numbers.
15 A technical note: We’re using the fact that the class of ordinals is (well-)ordered; see Lemma 2.11

in [15].
16 The last implication is only left-to-right because the right-to-left implication is a theorem of logic:

by equality-substitution, for any formula ϕ one can prove that x � y implies ϕpxq Ø ϕpyq.
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P-minimal element; formally:

p@xqpx � ∅ Ñ pDyqpy P x^ xX y � ∅qq.17

The Axiom of Regularity is justified by the bottom-up nature of V : in the cumulative hi-

erarchy, a membership chain (x1 Q x2 Q x3 Q . . .) will eventually come to a end. Regularity

captures this formally. It also allows one to define the rank of a set, which is (roughly

speaking) the height of the set in V , e.g. ∅ has rank 0 and Vα has rank α. This is a very

useful tool in ZFC.

The last axiom in this first group is the Axiom Schema of Separation. This allows us,

given a formula ϕ and set x, to define the subset tz P x : ϕpzqu; formally: given a formula

ϕpvq with one free variable v,18

p@xqpDyqpp@zqpz P y Ø z P x^ ϕpzqqq.19

Separation is justified by the fact that all subsets of a set in V are in V (recall that Vα�1

is defined as the power set, the set of all subsets, of Vα). The Axiom Schema is a way

of capturing this formally in ZFC (although it doesn’t quite capture it perfectly – see

footnote 31 below).

At this point, let us explain the set/class distinction. A set in ZFC is simply a variable

which, under the intended interpretation, refers to a set in V . A class is a collection of

the form

C � tx : ϕpxqu

for some formula ϕ. We write x P C as an abbreviation for ϕpxq; we do this because it is
17 Note that the existence of the intersection of two sets follows from the Axiom Schema of Separation,

which we shall discuss shortly. Please also forgive my cheating: ∅, �, and X are, strictly speaking, not
symbols in the language of set theory. I employed them for the sake of clarity, and I will continue to employ
such abbreviations for this reason.

18 It is an axiom schema, not just an axiom, because it is inherently second-order: for each formula
ϕpvq there is an instance of the axiom schema.

19 Note for the cognoscenti: For the sake of clarity, I have left out parameters from the statement of
this axiom schema; for a full-fat version, see p. 7 of [15].
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easier to work with classes than formulas.20 We can consider any set S as the class

tx : x P Su.

We cannot, however, treat all classes as sets. Consider the class U :� tx : x � xu. This is

the class of all sets, since for every set x we have x � x (as a theorem of logic). Suppose

that U was indeed a set; then we could apply Separation to it with the formula x R x to

get the set

S :� tx : x R xu.

This leads to Russell’s famous paradox, since both S P S and S R S lead to contradiction.

A class that is not a set is called a proper class.21

One of the key motivations behind the iterative notion of the cumulative hierarchy was

to deal with the contradictory nature of proper classes. The Separation Schema allows one

to specify only subsets of existing sets, and thus one cannot define a proper class, avoiding

contradiction. This leads us to the next group of axioms of ZFC, those which deal with

the size of the cumulative hierarchy.

The Axiom of Infinity asserts the existence of an infinite set; formally:

pDxqp∅ P x^ pp@yqpy P x Ñ y Y tyu P xqq.22

This axiom is easily justified by the cumulative hierarchy, since it asserts the existence of

ω, the set that allowed us to proceed to the infinite in V .

Notice that the Axiom Schema of Separation and the Axiom of Infinity together imply

the existence of the empty set, since we can apply Separation to the infinite set and the

formula x � x.23

The last axiom of this group concerning the size of sets is the Axiom Schema of

Replacement. This states that for any functional formula F and any set x, the image F pxq

20 It is important to bear in mind that this is only an abbreviation: the use of the symbol P here is
different from both its use in ZFC and the cumulative hierarchy.

21 We mentioned earlier the class On of all ordinals. This is in fact a proper class. This fact is the
content of the Burali-Forti paradox; we won’t go into the details (see p. 20 of [15] for a proper account),
but the rough idea is to consider On� 1.

22 Note for the cognoscenti: The axiom actually asserts the existence of what is called an inductive set.
The details are quite subtle, but this is equivalent to ω being a set (see Exercise 2.6 in [15]).

23 Some presentations of ZFC list a separate axiom asserting the existence of ∅.
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is a set; formally, given a functional formula F pv, wq,24

p@xqpDyqpp@zqpz P y Ø pDuqpu P x^ F pu, zqqq.25

We won’t get into the mathematics, but without Replacement the ordinals cannot get past

ω � 2 � t0, 1, 2, 3, . . . , ω, ω � 1, ω � 2, ω � 3, . . .u. Thus, this Axiom Schema is justified by

the idea that V should be bigger than Vω�2.

Note that the Axiom Schema of Replacement implies the Axiom Schema of Separa-

tion.26 Separation is listed separately because a restricted version of ZFC without Replace-

ment, but with Separation, is widely studied. Such a system is denoted ZC (or Z without

the Axiom of Choice – see below), since it was Fraenkel who introduced Replacement.

There are in fact other axioms regarding the size of V that are not included in the usual

presentation of ZFC, so-called large cardinal axioms. These axioms assert the existence of

sets of different very large sets and their study is an active area of research. One has to

be careful though: some large cardinal axioms turn out to be inconsistent with the rest of

ZFC, e.g. Reinhardt cardinals ([17]).

The last axiom of ZFC, the Axiom of Choice, is a straggler, although it is perhaps

affiliated with the group of axioms concerning the iterative conception of sets. Before we

state it, we need to define functions in ZFC. One defines an ordered pair pa, bq in ZFC as

ta, ta, buu.27

We know this set exists by the Axiom of Pairing. (Note that we can apply Pairing to a to

get ta, au, which equals the singleton tau by Extensionality.) We then define a function as

a set of ordered pairs f such that if px, yq P f and px, zq P f , then y � z. The domain of a

function f is the set tx : px, yq P fu; the existence of this set is guaranteed by the Power

Set Axiom and the Separation Schema. If px, yq P f , then we write y � fpxq.
24 A functional formula, or just a functional in this context, is a formula F pv, wq with two free variables

v and w such that if F px, yq and F px, zq, then y � z. The image of a set z under a functional is the class
F pzq :� ty : pDxqpx P z ^ ϕpx, yqu.

25 Note for the cognoscenti: I have again omitted parameters; see p. 13 of [15] for the unabridged
version.

26 Sketch proof: Given a set x and a formula ϕpvq, define a functional F by F pv, wq Ø v � w ^ ϕpwq.
Then F pxq � tz P x : ϕpzqu.

27 There are other ways of defining ordered pairs in ZFC. This is the conventional way, and is often
referred to as the Kuratowski ordered pair.

17



We will not attempt to state the Axiom of Choice completely formally, since it would

be somewhat long-winded and quite unclear. We shall state it semi-formally instead. The

Axiom of Choice says that every family28 of nonempty sets has a choice function. What

this means is that if we have a family of sets S � txi : i P Iu such that xi � ∅ for every

i P I, then there exists a function f with domain S such that

fpxiq P xi

for every i P I. Put heuristically, the function f “chooses” an element from each xi in S.

The Axiom of Choice is essential for various branches of mathematics, such as algebra

and analysis. For example, without Choice one can have vector spaces with two bases

of different cardinalities, i.e. the dimension of a vector space is no longer well-defined

(p. 66 of [13]). It is, however, somewhat controversial. For example, the (in)famous

Banach–Tarski paradox (1924) is a consequence of Choice. This paradox states that a

solid three-dimensional sphere can be cut into finitely many pieces – five, in fact ([28]) –

and, using only rotations and translation, can be reassembled into two spheres, each with

the volume of the original sphere (see [30] for a detailed exposition). Some dispute whether

this is in fact the fault of Choice, arguing that the definition of volume is to blame. We

will not enter into this debate; I simply wish to highlight the controversy surrounding the

Axiom of Choice.29 Because of its controversial nature, the Axiom of Choice is usually

listed separately from the other axioms: the ‘C’ in ‘ZFC’ stands for the axiom of choice,

and the theory of Zermelo–Fraenkel set theory without the Axiom of Choice is denoted

ZF.30

But all this controversy aside, how is Choice justified by the cumulative hierarchy?

The argument is as follows. Consider a family of sets:

S � txi : i P Iu .

28 The word family is merely a useful term to refer to a set of sets.
29 For an excellent compilation of the good, the bad, and the downright odd aspects of Choice, see [13].
30 When we wish to refer to either ZF or ZFC in a non-committal way, we shall write ‘ZF(C)’. (We

shall apply this notation more generally in §3.3.)
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Take the union of S:
¤

S � tx : pDi P Iqpx P Xiqu .

Let fpSq denote the set of elements chosen from the xi using the Axiom of Choice. By

the Axiom of Union,
�

S is in V . Now, each element chosen from the xi’s is in
�

S, and

thus fpSq is a subset of
�

. So, by the the iterative conception of sets, fpSq should be in

V .

Now, it turns out that this argument cannot be formalised in ZF,31 hence my use

of the word ‘should’ in the previous sentence (an unusual word to see in mathematical

reasoning). However, it does provide a good justification for Choice.

In this section we outlined the cumulative hierarchy and showed how the axioms of

ZFC are justified by this conception of sets. In the next section we shall examine set

theory as a foundation for mathematics. But before we move on, we need to make an

important terminological distinction (which we have been employing implicitly already).

We shall call the theory that we have been describing in this section, that of ZFC and its

concomitant justification from the cumulative hierarchy, orthodox set theory.32 This is the

theory which we shall show SDG to be autonomous from. We will also refer to näıve set

theory, by which we shall mean the informal and heterogeneous collection of intuitions and

elementary notions of membership, such as Venn diagrams and ‘1 is a member of t1, 2, 3u’.

The boundary between the two is of course not well-defined, but is still an important

distinction to maintain, since later we shall argue that SDG can take concepts from näıve

set theory and still legitimately claim autonomy from orthodox set theory.

3.2 Set theory as a foundation for mathematics

In this section we shall apply the criteria outlined in §2.1. We shall conclude that orthodox

set theory can provide a foundation for mathematics.

The technical strength of set theory is well attested. One can construct and carry
31 One might think that one could use the Axiom Schema of Separation to prove it, but recall that

to apply Separation one must have a formula to define the subset, i.e we must in some way be able to
specify the elements of the subset. The Axiom of Choice is non-constructive – it does not tell you what
the choice set is, only that it exists – and thus one cannot use Separation to define the choice set. Now, in
the so-called constructible hierarchy, in which every set is defined by a formula, one can in fact prove that
the Axiom of Choice holds (see chapter 13 of [15]).

32 Unless otherwise specified, by set theory we shall always mean orthodox set theory.
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out all “everyday” mathematics in set theory: real, complex, and functional analysis;

algebraic and differential geometry; combinatorics – the list goes on. For example, one

uses the ordinal ω to perform arithmetic, and one constructs the real line R from ω by

taking various equivalence classes (see chapter 9 of [11]). However, there are some areas

of mathematics that cannot be formalised in set theory. For example, in category theory

(which we shall describe in the next chapter), one defines entities such as the category of

all topological spaces and the category of all groups. Such objects cannot be built in ZFC,

since they form proper classes. There are ways of partially dealing with such objects in

ZFC though; for example, one can employ a large cardinal axiom and then restrict one’s

attention to small topological spaces and groups, ones that are smaller than this large

cardinal. But all this aside, set theory is still a remarkably powerful theory that can carry

out most of current mathematics, and thus it meets the criterion of technical strength.

Set theory has a strong conceptual basis, namely the cumulative hierarchy. It is based

on the empty set and well-defined, easily understood operations. While one might question

the ontology of these sets – do they exist in some sort of platonic sense, independently of

humanity’s study of them, or are they purely the creation of our intellect? – they certainly

provide a sound justification for set theory.

Now, one might argue that ZFC is not the only theory that can be justified by the

cumulative hierarchy; for example, one might think that certain large cardinal axioms are

justified by the cumulative hierarchy. However, this is not important for orthodox set

theory as a foundation for mathematics. As we pointed out in Chapter 2, two different

theories might share a conceptual basis, but each theory still has a conceptual basis.

The naturality of set theory is straightforward. The axioms are parsimonious. While

some axioms are not independent of each other, as we saw in the previous section, none

is entirely redundant. For example, while Separation is a consequence of Replacement, its

being stated separately is useful both for presentation and for distinguishing between the

theories Z and ZF. ZFC is also not pathological: all of the axioms regard properties of sets.

Now, one might worry that the Power Set Axiom is smuggling in higher-order concepts

(remember that ZFC is a first-order theory), but one would be anxious unnecessarily. For

set theory is a theory about sets and so it is quite reasonable that in ZFC one should

quantify over sets of sets (since that is what it is, a theory of sets). It is not like Peano
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Arithmetic, where quantifying over sets of numbers would be higher-order, since sets of

numbers are not themselves numbers. Indeed, one needs to be careful to state ZFC in the

correct first-order way: Separation and Replacement are axiom schemas, not axioms.

We have shown that set theory meets all the criteria from the previous chapter, and

thus set theory provides a foundation for mathematics. Before we move on to the next

theory of this essay, SDG, let us briefly consider other notions of sets.

3.3 Other conceptions of sets

So far we have only looked at orthodox set theory, but there are other conceptions of sets.

In a slight digression from our main discussion, we shall briefly examine some examples

of such different conceptions, namely variations of ZFC, the elementary theory of the

category of sets, intuitionistic set theory, and non-well-founded set theory. While our

discussion of these theories is not necessary for our primary thesis regarding SDG as an

autonomous foundation for mathematics, we shall draw on them in Chapter 6 when we

discuss our secondary thesis of mathematical pluralism.

There are many variations of orthodox set theory. For example, as we noted in §3.1,

one can work in Z or ZF, rather than in full ZFC, or with constructible sets (see footnote

31 above), or one can add large cardinal axioms to ZFC. The systems ZF� (ZF without

Power Set) and ZF�inf (ZF with Infinity negated) are also studied. One can also introduce

atoms, sets that have no members but are not equal to the empty set. In this formulation,

denoted ZFA (or ZFAC with the axiom of choice),33 one builds the the cumulative hierarchy

from the empty set and the atoms, and so it starts with a line, rather than a point, as

demonstrated in Figure 3.2.

A more major variation on ZF is that of Bernays–Gödel set theory, denoted BG (or

BGC with the axiom of choice).34 In this theory, there are two types of objects, sets and

classes. The rough idea behind BG(C) is that classes are collections of sets that are “too

big” to be sets themselves. BG(C) and ZF(C) are conceptually quite similar, and they

have equal provability power over statements involving only sets (p. 70 of [15]).
33 See p. 250 of [15] for a rigorous outline of ZFA(C). Note that ZFA is often referred to as ‘ZFU’,

which stands for ‘ZF with Urelemente’ (‘ZF with pure elements’).
34 See p. 70 of [15] for a rigorous outline of BG(C).
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Figure 3.2: A sketch of the cumulative hierarchy
with atoms (c.f. Figure 3.1)

The elementary theory of the category of sets (ETCS) was first formulated by William

Lawvere in 1964 (see [18] and [19]). It is written in the language of category theory, which

we shall describe in the next chapter. In ETCS, sets are not extensional: roughly speaking,

a set is not defined by its members, but rather by the functions between it and other sets.

This may sound contradictory, since one might think that one needs elements to define

functions, but this turns out not to be the case. ETCS very much goes against the picture

of sets painted by the cumulative hierarchy.

Intuitionistic set theory (IST) is a version of set theory built on intuitionism. We shall

not go into the details,35 but the main idea behind intuitionism is that we should only

accept mathematics that can, at least in principle, be constructed or demonstrated. For

example, the intuitionist takes a statement of the form ‘Dn ϕpnq’ to mean that we actually

have a number n for which ϕ holds. Thus, the Axiom of Choice is completely unacceptable

to the intuitionist, since it does not specify which elements are chosen. The intuitionist

also rejects completed infinities, since it is impossible for such a thing to actually be

constructed (even in principle).36 Thus, quite unlike ZF(C), all sets in IST are finite.

The final variant of set theory that we shall discuss is that of non-well-founded set
35 A good introduction to intuitionism is to be found in chapters 4 and 5 of [10]. The comprehensive

guide is of course [7].
36 The intuitionist does however accept the existence of potential infinities. So, for example, it is

intuitionistically valid to say that there are infinitely many numbers (since given any number one can
always add 1), but it not intuitionistically valid to start talking about the set of natural numbers. Thus
the Axiom of Infinity does not hold in IST.
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theory. There are many different formulations (see [1]), but the common theme is a

rejection of the Axiom of Regularity. The idea is that sets can have membership loops;

such sets are often called hypersets. This goes completely against the well-founded nature

of sets in the cumulative hierarchy.
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Chapter 4

Synthetic differential geometry

We now come to the main topic of this essay, synthetic differential geometry. In §4.1 we

shall outline SDG and then in §4.2 we shall examine SDG as a foundation for mathematics,

applying the criteria from §2.1.

4.1 An outline of SDG

In this section we shall describe SDG and the concepts behind it: smoothness and isomor-

phism. Because of the length of the discussion, I have split this section up into subsections.

As with our description of set theory in the previous chapter, our outline of SDG will

not cover all the technical details. The standard mathematical reference is Anders Kock’s

text, which is now in its second edition: [16]. Briefer introductions can be found in [22]

and in [23], the latter also being an introduction to category theory and topos theory.

Before we can discuss SDG or its justification, we first need to describe two things:

categories and toposes.

4.1.1 Categories and toposes

The idea behind category theory is to look at how things behave, rather than how they

are made. So, for example, given two groups, a category theorist would be much more

interested in the homomorphisms between them than in their individual elements. Pet-

tigrew sums it up nicely: ‘Ask not what a thing is; ask what it does’ (p. 1 of [26]).

Broadly speaking, the way this is achieved is to take functions as primitive, rather than
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as correspondences between elements of two sets.

A category is defined in first-order logic. A category has objects and arrows (or mor-

phisms). Each arrow is associated with precisely two (possibly equal) objects, one called

its domain and the other its codomain. If f is an arrow with domain A and codomain B,

then we write Dompfq � A and Codpfq � B, which we denote by f : A Ñ B or A
f
ÝÑ B.

The first axiom of a category regards composition of arrows. If arrows f and g are

such that Codpfq � Dompgq, then they have a composite arrow, denoted g � f , with

Dompg � fq � Dompfq and Codpg � fq � Codpgq. So, if f : A Ñ B and g : B Ñ C, then

g � f : A Ñ C. This can be expressed with a so-called commutative diagram:

A
g�f - C

B

g

-

f -

A diagram of objects and arrows, such as the one above, is said to commute iff any

path from one object to another is the same under composition; such a diagram is called

a commutative diagram. So, in the example above, we can go from A to C in one of two

ways: along f and then along G, via B; or directly along g � f . By definition, these two

paths are the same, since the direct path along g � f is defined to be the composition of

the two parts of the path via B.

The next axiom concerns identity arrows. Every object A has an identity arrow

IdA : A Ñ A such that for any objects B,C and arrows f, g with f : A Ñ B and g : C Ñ A,

we have f � IdA � f and IdA � g � g; that is, the following diagrams commute:

A
f - B

A

f

-

IdA
-

C
g - A

A

IdA

-

g -

The final axiom of a category is that composition is associative; that is, for any objects

A,B, C, D and arrows f, g, h such that A
f
ÝÑ B

g
ÝÑ C

h
ÝÑ D, we have h� pg �fq � ph� gq �f ,

i.e. the following diagram commutes:

B
h�g - D

A
g�f

-

f
-

C

h

-
g
-
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(Notice that we do not draw the composition arrows h � pg � fq and ph � gq � f , since they

would only clutter the diagram.)

A topos is a special kind of category that satisfies some additional axioms.1 Our

discussion in the next section necessitates that we describe these axioms in some detail,

although the explanations given will not be completely rigorous, in particular that of

exponential objects.

The first axiom of a topos states that there exists a terminal object, an object 1 such

that for every object A there exists a unique arrow 1A : 1 Ñ A. Note that this terminal

object need not be unique; when we use the symbol 1, we refer to an arbitrary terminal

object.

The next axiom regards pullbacks. It comes in two parts. Consider the following

diagram:
A B

C

g
�

f - (4.1)

The first part of the axiom states that, for any such diagram, there exists an object Q along

with two arrows qA : Q Ñ A and qB : Q Ñ B such that the following diagram commutes:

Q

A

qA

�
B

qB

-

C

g
�

f -

(4.2)

In other words, f �qA � g�qB. The second part of the axiom states that if there is another
1 A technical note for topos theorists: There are many equivalent ways to define a topos. We shall

follow that of [2], namely that a topos is a category which has a terminal object, pullbacks, exponentials,
and a subobject classifier (p. 308). I have chosen this particular approach because I believe it is the easiest
to explain and will be the most straightforward – or rather the least difficult! – to justify conceptually.
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object Q1 with arrows q1A : Q1 Ñ A and q1B : Q1 Ñ B such that the diagram

Q1

A

q1A

�
B

q1B
-

C

g
�

f -

commutes, then there is a unique arrow h : Q1 Ñ Q such that the following diagram

commutes:

Q1

h
��q1A

��

q1B

��

Q

qA~~~~
~~

~~
~~

qB   @
@@

@@
@@

@

A

f   A
AA

AA
AA

A B

g
~~}}

}}
}}

}}

C

If Q, qA : Q Ñ A, and qB : Q Ñ B are such that they satisfy these conditions, then Q

(with qA and qB) is called a pullback of (4.1), and (4.2) is called a pullback square.

At this point, a remark is in order. Notice that in each of the above axioms we do

not define a unique object per se, but an object that is unique only up to isomorphism;

that is, one states that an object with certain properties exists, but also that if there is

another object with the same properties, then there is an unique arrow from one to the

other.2 The other topos axioms are of a similar vein. This notion of objects being unique

only up to isomorphism is perhaps the crucial concept behind category theory; it is the

formalisation of Pettigrew’s ‘Ask not what a thing is; ask what it does’ motto that we

mentioned earlier. This concept is important to bear in mind, and we shall come back to

it later, but let us return to stating the axioms of a topos.

The third axiom asserts the existence of exponential objects (or just exponentials for

short). The definition of an exponential is in a similar style to that of pullbacks given above,
2 While we didn’t quite state it in such terms, notice that this is true of the terminal object axiom: for

if two terminal objects 1 and 11 exist then, by the definition of a terminal object, there is a unique arrow
1 Ñ 11.
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but the details are more involved and thus I will not state their definition rigorously (a

formal definition can be found on p. 57 of [23]). Instead, I shall explain them heuristically,

which will suffice for our discussion. The exponential of two objects A and B is denoted by

BA. As the notation suggests, it behaves like the set of arrows from A to B. This axiom

allows more advanced structures to be built from simpler ones and is crucial for doing

mathematics in a topos, and thus in turn will be crucial for SDG to provide a foundation

for mathematics (more on this later).

Before we explain the final axiom of a topos, we need to explain how one expresses

membership in a topos. Given an object A, one defines a member of A to be an arrow

x : 1 Ñ A (recall that 1 denotes an arbitrary terminal object). This makes sense, since a

terminal object is one to which each object has a unique map, and so the map x : 1 Ñ A

can be thought of as using this uniqueness to “pick out” a member of A. Notice here that

an member is a arrow, not an object. This is quite different from membership set theory,

where in fact quite the opposite is the case, since functions are made from sets. Notice

also that one cannot have an member of a member, since a member is an arrow and so

one would have to have an arrow to an arrow, which doesn’t make sense in a category.

This marks another difference from set theory.

One can generalise this notion of membership to define subobjects. Technically, a

subobject of an object A is a monic3 arrow from an object S to A, but one can think of

this informally as a category-theoretic way of “picking out” several members of A.

We can now describe the last axiom of a topos, which states that a topos has a subobject

classifier. The idea behind this axiom is to allow truth to be internalised into the topos.

Formally, a subobject classifier consists of an object Ω and an arrow 1 true
ÝÝÝÑ Ω such that

for any object A and subobject S
i
ÝÑ A, there is a unique arrow A

χiÝÑ Ω such that the

3 An arrow A
f
ÝÑ B is monic iff for any C

g
ÝÑ A and C

h
ÝÑ A, f � g � f � h implies g � h. This can be

thought of as the category-theoretic generalisation of an injection.
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following diagram is a pullback square:

S

1

1S

�
A

i
-

Ω
χi

�true -

Let us try to explain this diagram heuristically. Notice that 1 true
ÝÝÝÑ Ω is a member of Ω,

and thus Ω can thought of as containing the truth-values of the topos.4 The χi can be

thought of as the characteristic function of i: it is the arrow that sends the subobject i to

true.

Using the subobject classifier, one can build semantics within a topos, known as the

internal language. The details of the construction are very involved,5 but the idea is that

using only the tools of category theory, namely objects and arrows, one can construct a

notion of truth internal to the topos. This internal language is crucial to SDG, since it

allows one to express concepts that classical logic is unable to; for example, in this internal

language the law of the excluded middle does not necessarily hold, which, as we shall see,

will be essential in expressing the axioms of SDG.

Now that we have described categories and toposes, let us discuss the justification

behind SDG.

4.1.2 Smoothness and isomorphism

There are two key concepts behind SDG: smoothness and isomorphism. We shall discuss

them in turn.

The concept of smoothness starts as an informal one. The idea is to view the continuum

as a non-punctiform, cohesive whole that cannot be broken or bent perfectly at a point. A

comparison with the set-theoretic continuum will be helpful. The set-theoretic continuum,

R, is made up of points. One can define non-smooth functions R Ñ R, such as the modulus

function

fpxq � |x|,

4 We shall not define it, but Ω also contains the truth-value false (see p. 29 of [26]).
5 See chapter 14 of [23] for a detailed exposition.
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and, moreover, discontinuous ones, such as the so-called blip function

fpxq �

$''&
''%
�1 if x   0,

1 if x ¥ 0.

We can do this because R is punctiform: we define functions by specifying their action

at each point. Now, in the SDG-continuum, which we shall call R, one cannot define

functions like this, since R is not punctiform. The informal idea is that R is like an

indefinitely compressible and extendsble strip of elastic: one can manipulate it by pulling,

stretching, and squashing it in various directions and magnitudes, but one cannot tear it

or bend it perfectly at a point.6

This view of the continuum as being a non-punctiform, cohesive whole is an old one.7

Mathematicians and philosophers as notable as Aristotle, Kant, Leibniz, and Poincaré

all considered the continuum to be non-punctiform (pp. 1–2 of [4]). While the idea of

the continuum (and matter more generally) being made up of atoms dates back to at

least Democritus (p.15 of [3]), this view, until the late 19th century, was very much the

minority opinion, for it seemed to be undermined by the following simple argument: how

can the continuum, which has extension, be composed entirely from points, which have

no extension?

The question is now this: how do we make this notion of smoothness more precise?

This is where infinitesimals come in. The idea is to view the continuum not as consisting of

a collection of points, as one does in set theory, but to view it as consisting of infinitesimals,

infinitely short line segments. Now, the notion of an infinitesimal is a difficult one, since

it immediately raises the following difficult problem. It seems as though the continuum

should be infinitely divisible; that is, I should always be able to divide a line segment in

two. The question is then: can one divide an infinitesimal in two? For if one can, then

we seem to have a contradiction, since an infinitesimal has infinitely short length and yet

we can find a shorter length, namely this “infinitely short” length divided by 2. But if we
6 One could of course approximate the modulus function by bending the elastic around a nail or pin,

but no matter how small, these objects would have width and thus the elastic would never be bent at a
point.

7 We do not have room to cover the history of the different views of the continuum in any serious
depth. For such an account, see Part I of [3].
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cannot, then we contradict the infinite divisibility of the continuum. Berkeley, a staunch

critic of infinitesimals, famously described them as ‘ghosts of departed quantities’ (p. 22

of [32]).

This difficult problem didn’t stop the use of infinitesimals, however. For example,

they were fundamental in Newton’s development of the calculus and the work of Riemann

(pp. 82–86 and pp. 145–148 of [3] respectively).8 Indeed, even after the work of Cauchy

and Weierstrass, who eliminated infinitesimals from the calculus through the introduction

of the now familar ε–δ notion of a limit, mathematicians of as high repute as Lie and

Cartan continued to use them to help formulate concepts (p. 3 of [4]), and use amongst

physicists and engineers is still widespread. However, as we alluded to earlier, the work

of Cauchy and Weierstrass, along with that of Dedekind and Cantor, put a (temporary)

end to the use of infinitesimals amongst mathematicians. Bertrand Russell’s description

of infinitesimals as ‘unnecessary, erroneous, and self-contradictory’ (p. 3 of [4]) sums up

the opinion of most 20th century mathematicians quite accurately.

So where does this leave us? Without infinitesimals, how are we to make the concept

of smoothness precise? Well, after a period of abeyance, infinitesimals began to reemerge.

In the 1960s, Abraham Robinson outlined non-standard analysis, a rigorous system of

analysis containing infinitesimals (as well as infinitely large numbers) (see [27]). While

this approach is not the one that is employed for SDG, it marks a crucial stage in the

development of infinitesimals, since it was the first time that they had been framed in an

entirely rigorous way. We shall see that the internal language of a topos will enable us to

frame infinitesimals in a rigorous way that captures the notion of smoothness.

We can now make the notion of smoothness more precise. We shall use Hellman’s work

in [12]. Hellman outlines two principles. The first is the Principle of Microstraightness:

‘Given a smooth curve C and any point P on it, there is a nondegenerate microsegment

about P which is straight.’ (pp. 624 of [12])9

8 I’m being a little blunt here. Infinitesimals have been posited in all sorts of different forms. For exam-
ple, Newton talked of fluxions, which were conceptually different from Leibniz’s notion of an infinitesimal,
which in turn was different from the infinitesimals employed by the 17th century Dutch physicist Nieuwen-
tijdt (see pp. 82–101 of [3]). Still, all the conceptions had one thing in common, the notion of (some sort)
of infinitely short length, which is the notion germane to our discussion.

9 Something is said to be nondegenerate iff it is not equal to zero.
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The idea of Microstraightness is to view a curve as being made from infinitesimal line

segments; so, for example, a circle is viewed an an infinitely-sided polygon. The microseg-

ment at P is the derivative at that point, hence why we have smoothness, since we can

differentiate at every point.

An important point to make here is that while the view of the continuum under

Microstraightness is non-punctiform, it does not say that that curves do not contain points.

That is, curves contain points, they just aren’t solely composed from them.10 To adapt an

analogy from [5], one can view the continuum as points glued together by infinitesimals.

The metaphysics of this does not concern us in this essay: whether or not continua are

actually so composed is a topic for another day. What does matter for us is whether

Microstraightness is coherent; if it is not, then how is it different from all the historical

unrigorous approaches to infinitesimals? In the next section we shall see that with the

internal language of a topos we can indeed make this concept rigorous. Indeed, it would

seem that the lack of topos theory (or some other sufficiently powerful mathematical

apparatus) was what held historical attempts back from rigour.

The second of Hellman’s principles is the Archimedian Method, which is the principle

that the area under a curve y � fpxq is the sum of the areas of the infinitesimally thin

rectangles between the curve and the x-axis. This is the two-dimensional version of the

Principle of Microstraightness. Now, that this follows from our informal conception of

smoothness is less clear than Microstraightness, and we shall discuss this in the next

section, but for now we shall simply take the Archimedian Method as a principle behind

SDG.

Before we move on to isomorphism, the other key concept behind SDG, a digression

is in order. As we have been alluding to already, the notion of smoothness is related to

that of cohesiveness, as articulated by Bell in [5]. Bell defines a space S to be cohesive (or

indecomposable) iff for any parts U and V of S, if U Y V � S and U X V � ∅ then either

U � ∅ or V � ∅ (p. 147).11 We shall outline the relationship between smoothness and

cohesiveness through two observations.

Our first observation regards the law of the excluded middle (LEM). If we have LEM,
10 This seems to have been Poincaré’s view of the continuum: ‘[T]he point is not prior to the line, but

the line to the point.’ (p. 2 of [4]).
11 Bell goes on to define further notions of cohesiveness, which we shall not discuss.
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then the only spaces that are cohesive are the empty space (trivially) and spaces with

only one point. The proof is as follows. Consider a cohesive space S and a point p P S.

Define U :� tpu and V :� S ztpu. By LEM, for every q P S, either q � p or q � p. Thus

U Y V � S and U X V � ∅, and so by cohesiveness either U � ∅ or V � ∅. But p P U

and so U � ∅. Thus V � ∅ and so S � tpu. This brings us to our second observation.

Define a space to be decomposable iff it is not cohesive. Then the decomposability of

a space S implies that we can define a discontinuous function on S. The argument is as

follows. Let S be a decomposable space. Then there exist parts U and V of S such that

U Y V � S and U X V � ∅ but U � ∅ and V � ∅. Define a function f : S Ñ t0, 1u by

fpxq �

$''&
''%

0 if x P U ,

1 if x P V .

This function is discontinuous. Now, by the contrapositive of our argument, continuity im-

plies cohesiveness; that is, spaces upon which one can define only continuous functions are

cohesive. Thus, since smoothness implies continuity, smoothness implies cohesiveness.12

Therefore smoothness is a special case of cohesiveness and thus, by our first observation,

if we wish to formalise the concept of smoothness then LEM cannot universally apply.

This is why the internal language of a topos, in which LEM does not necessarily apply, is

crucial for SDG. Let us now discuss isomorphism.

The idea behind isomorphism is to look at the structural properties of mathematical

objects, rather than the objects themselves. For example, consider the sets t1, 2, 3, 4u and

t♣,♦,♥,♠u. We can turn these sets into groups by defining binary operations on them:

1 2 3 4

1 1 2 3 4

2 2 1 4 3

3 3 4 1 2

4 4 3 2 1

♣ ♦ ♥ ♠

♣ ♣ ♦ ♥ ♠

♦ ♦ ♣ ♠ ♥

♥ ♥ ♠ ♣ ♦

♠ ♠ ♥ ♦ ♣

Now, these two groups are isomorphic (explicitly: 1 ÞÑ ♣, 2 ÞÑ ♦, 3 ÞÑ ♥, 4 ÞÑ ♠) and

thus, as groups, are the same – the elements themselves are unimportant. Compare this
12 I am relying on intuitive notions of continuity and smoothness here, rather than on any particular

formal definitions.
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with the set-theoretic view of these groups, where the elements are very important, since

they compose the underlying sets.13

The motivation behind isomorphism is to extend this outlook to all of mathematics.

Such an idea has perhaps been implicit in mathematicians’ minds since mathematics was

first studied – counting bricks or counting sheep, what’s the difference mathematically?

– but I believe the origin of the modern notion can be traced back to the (independent)

discovery of non-Euclidean geometry by Bolyai, Lobachevski, and Gauss in the early 19th

century (see p. 166 of [31]). This discovery dislodged the old idea of the absoluteness of

Euclidean geometry, as explicitly articulated by Kant, which lead to new ideas about the

nature of geometry. One of these ideas was to no longer view geometry as about space

per se, but rather to look at the transformations and the associated invariants between

spaces, as articulated by Felix Klein in the Erlangen programme (named after the university

Klein was working at at the time). Following on from this, more abstract notions were

considered, moving further and further away from the study of the space itself. This lead

to the publication in 1945 of Eilenberg’s and Mac Lane’s famous article ([8]) that marked

the beginning of category theory, the branch of mathematics dealing with transformations

in their most abstract form, which in turn lead to the development of topos theory in the

1960s, most notably by William Lawvere.

As with smoothness, we shall not consider the metaphysics of isomorphism. While

questions regarding the nature of isomorphism and its relation to the ontology of structure

are interesting to ask, we shall bracket them.14 Let us now outline the axioms of SDG.

4.1.3 The axioms of SDG

SDG is a theory of three parts. Firstly, it consists of the axioms of a topos;15 these axioms

arise out of consideration of the concept of isomorphism. Secondly, using the internal

language of the topos, one defines a set of axioms known as smooth infinitesimal analysis
13 This is not to say that one cannot consider notions of isomorphism in set theory. My point is that

in set theory one starts off with sets with given structures and then one studies the isomorphisms between
them, while the idea behind the concept of isomorphism is to only consider the isomorphisms, as in category
or topos theory, for example.

14 Note that such questions are very much related to the current debate in the philosophy of mathematics
over structuralism (see chapter 10 of [29]).

15 One also specifies that the topos be non-degenerate, which, heuristically, says that the topos is not
trivial.
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(SIA); as the name suggests, these axioms reflect the concept of smoothness. The last

part concerns discrete subspaces and the natural numbers. We shall start by outlining the

axioms of SIA, which are stated in the internal language of the topos.16 We will not go

into the finer details of SIA; for such an account, see [4].

The first axiom of SIA asserts the existence of a nontrivial commutative ring pR, 0, 1,�, �q

with various properties.

The crucial property is the existence of a neighbourhood 4 :� tε P R : ε2 � 0u

of 0 in R. These are the infinitesimals which will allow us to formalise the Principle of

Microstraightness. (The set of infinitesimals around an arbitrary point x is the translate

x � 4.) We need another axiom to explain why these infinitesimals are defined to be

nilsquare (ε2 � 0). This axiom is the Principle of Microaffineness, which states that maps

4Ñ R are affine; formally:

p@f P R4qpD!a P Rqpp@ε P 4qpfpεq � fp0q � a � εqq.17

This is the formalisation of the Principle of Microstraightness: the point P, in this case 0,

is sent to another point, fp0q, and the infinitesimal microsegments around 0 are mapped

to microsegements around fp0q. The constant a is then the derivative at fp0q, since it is

the gradient of the microsegments at fp0q. Using Microaffineness we can formally prove

that 4 � t0u: simply apply it to the curve y � x2.

Let us now justify why the infinitesimals in 4 are nilsquare.18 Consider Figure 4.1.

Microstraightness states that about fpxq there is a nondegenerate infinitesimal microseg-

ment about which the curve is straight, and hence we must have ε � 0. Now, let us

calculate the areas � and ∇:

� � ε � fpxq

16 This is important to bear in mind, since LEM does not hold in the internal language of SDG. If it
did then the axioms would be blatantly contradictory.

17 Note that we are relying on the existence of exponentials in the topos in order to talk about R4.
18 We take this justification from [12] (pp. 624–625).
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Figure 4.1: The justification for ε2
� 0

and

∇ �
1
2
ε � pfpx� εq � fpxqq

�
1
2
εfpεq pby Microaffinenessq.

So ∇ is proportional to ε2. Now, by the Archimedian Method, the area under the curve

is equal to the sum of the �’s, and thus ∇ � 0. Thus we require that ε2 � 0.

Let us now state the ordering properties of R. Trichotomy does not hold in R; that is,

one does not have

p@x P Rqp@y P Rqpx   y _ x � y _ y   xq.

Instead, one has

p@x P Rqp0   x_ x   1q

and

p@x P Rqp@y P Rqpx � y Ñ x   y _ y   xq.

So, one can distinguish elements of R to a certain degree, and if one can distinguish two

elements then one can order them precisely. This calls for a remark.

As we mentioned in the previous subsection, a necessary condition for continuity (and

hence also smoothness) is that LEM does not hold. This is why in SIA not all elements

of R can be distinguished; that is, trichotomy fails because it is a consequence of LEM: if

we could distinguish all points from 0, say, then we could define the blip function, going
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against the concept of smoothness. Let us return to the axioms.

In R, one has has transitivity

p@x P Rqp@y P Rqp@z P Rqpx   y ^ y   z Ñ x   z

and irreflexivity

p@x P Rqpx ¢ xq.

The final axiom is that R is a field in a partial sense:

p@x P Rqpx � 0 Ñ ppDyqpx � y � 1qqq.19

The idea here is that elements that can be distinguished from 0 have inverses, which calls

for a remark.

We shall now discuss the topos axioms. Since we already defined them in §4.1.1 we

shall now only justify them. Before we examine each axiom individually, let us make

a remark regarding isomorphism. As we highlighted when we outlined the axioms of a

topos, objects are defined uniquely only up to isomorphism. That this holds in SDG is

clearly justified by the concept of isomorphism that we outlined in the previous subsection:

we are concerned with how the smooth objects behave, rather than the smooth objects

themselves.

The existence of terminal objects is justified by the Microstraightness Principle. Given

that we have a points-and-glue concept of the continuum, the terminal objects are the 0-

dimensional spaces containing just one point of R.

The existence of pullbacks and exponentials is a consequence of smoothness. We will

not be entirely precise, since the reasoning is mathematically quite involved. The idea with

exponentials is that smooth maps between smooth spaces vary smoothly, and thus expo-

nentials themselves are smooth objects. The pulback construction is more complicated,

but the idea is that it acts like the intersection of the two smooth spaces and hence is

itself smooth. Note that these axioms allow us to explicitly construct higher-dimensional

smooth spaces from R, uch as R2 and RR, as well as subspaces defined by equations (see
19 In this regard Bell calls R an intuitionistic field (p. 298 of [3]).
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p. 81 of [22]).

We now come to the subobject classifier axiom. While its technical role is crucial

to SDG, since without it we could not construct the internal language of a topos and

thus we could not consistently state the SIA axioms, it is not clear how it is justifed by

the concept of smoothness.20 Why should there be a smooth object that can express

truth values within SDG? At this point I have to admit defeat: I cannot think of a precise

argument as to why smoothness justifies the existence of the subobject classifier. I suspect

that it can be justified, perhaps along the following lines: since smoothness implies that

LEM cannot hold, the very process of formalising the concept of smoothness in some way

justifies the existence of a smooth method for building the internal language of a topos.

We now come to the the discrete subspace axioms of SDG. These were first put forward

by McLarty in [22] and are not usually included in presentations of SDG.21 However, they

are crucial for SDG to provide a foundation for mathematics.

The two discrete subspace axioms state that every space is either empty or contains

a point; and that every space M has a unique discrete subspace, denoted ΓM . These are

justified for R by the points-and-glue picture of the continuum: the discrete subspace is

the discrete space of points (without the infinitesimal glue). That all spaces have such

a discrete subspace is justified by our remark earlier that in SDG one builds higher-

dimensional spaces from R, and thus the discrete subspace of R is transferred to these

higher-dimensional objects.

The last axiom of SDG asserts the existence of a natural number object, which is an

object N together with arrows 1 z
ÝÑ N

s
ÝÑ N such that for any object X with arrows

1 f
ÝÑ X

g
ÝÑ X, then there is a unique arrow N

h
ÝÑ X such that the following diagram

commutes:

1
z- N

s- N

X

h

?

g
-

f -

X

h

?

The way to think of this heuristically is to view 1 z
ÝÑ N as the number 0 and N

s
ÝÑ N as

20 If we can justify the existence of a subobject classifier by smoothness, then we can justify its unique-
ness only up to isomorphism by the concept of isomorphism underpinning SDG.

21 Note that Bell includes them though in [3].
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the successor operation. This is justified by the discrete subspace of the continuum, since

one can embed a model of the natural numbers in R using these discrete points. Indeed,

we defined R as a commutative ring with a distinguished element 1, and so the numbers

1, 1 � 1, 1 � 1 � 1, . . . exist explicitly in R. That we have a separate axiom asserting the

existence of a natural number object unique up to isomorphism is justified by the concept

of isomorphism.

4.2 SDG as a foundation for mathematics

We will now apply the criteria from §2.1 to SDG. Let us start with technical strength.

SDG is a powerful theory. Its geometrical power is clear (see [16]) and, using the

natural number object axiom, one can do arithmetic and combinatorics. But how does

SDG’s strength fare with regard to other branches of mathematics, for example analysis

and set theory?22

SIA is a powerful system of analysis (see [4] and [16]), but the analysis is, as its name

suggests, all smooth and thus is incomplete from a classical standpoint. One cannot simply

stipulate that all analysis should be smooth – just ask someone studying catastrophe theory

or singular algebraic curves! This is where the discrete subspace axioms come in.23 One

can construct the classical reals by taking the discrete subspace of R; that is, ΓR � R (p.

319 of [3]). More complex classical objects are constructed similarly, e.g. pΓRqpΓRq � RR

(p. 320 of [3]). Thus SDG does indeed have enough technical strength to carry out classical

analysis, not just smooth analysis.

The discrete subspace axioms also allow one to carry out at least elementary set theory

(see [23]), but how does SDG compare to ZFC with regard to higher cardinals? Unfortu-

nately I have not been able to ascertain the answer,24 but I suspect that it is equivalent in

power to Z (ZF without the Axiom Schema of Replacement). My (very rough) reasoning is

this. To generate higher cardinalities, we need to be able to iterate the power set operation
22 While we are generally viewing set theory as a foundational theory, it is also an important branch

of mathematics in its own right, and thus SDG must be powerful enough to carry out set theory if it is to
provide a foundation for mathematics.

23 In [20], Linnebo & Pettigrew claim that SDG can only act as a foundation for a small part of
mathematics (p. 6). They were not wrong to write this, since they did not include the discrete subspace
axioms as part of SDG.

24 As far as I can see, no one has actually published on this.
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along the ordinals, taking unions at limits, as we did with the cumulative hierarchy. In

SDG we can use exponentials to mimic the construction of power sets and we have a nat-

ural number object, and thus we can get to at least (the equivalent of) Vω, and thus SDG

is at least as powerful as Z. However, I cannot see how we could construct ω � 2, and hence

SDG must be weaker than ZF.25 My reasoning is of course woefully unrigorous; I think

the question of the set-theoretic power of SDG would make a fine area of mathematical

research.

In conclusion, it would seem that while SDG cannot compare with ZFC in terms of

set-theoretic strength, it is capable of carrying out most “everyday” mathematics, such

as analysis and arithmetic, and thus it meets the requirement of technical strength to a

reasonable degree. Let us move on to the conceptual justification for SDG.

SDG has a conceptual basis, namely that of smoothness and isomorphism. The in-

formal concept of smoothness was made more precise in the form of the Principle of

Microstraightness and the Archimedian Method. As we suggested earlier, these are not

the only ways to proceed from the informal notion of smoothness. For example, one can

consider variants of SDG in which infinitesimals are not nilsqaure, but nilcube, or indeed

εn � 0 for any n (see p. 224 of [23]). However, a theory’s conceptual basis does not have

to be unique, and Microstraightness and the Archimedian Method are coherent ways of

proceeding from smoothness. Thus SDG does indeed has a reasonable conceptual basis.26

Let us lastly consider naturality. The axioms of SDG are clearly parsimonious. SDG

is also not pathological, since the axioms assert the existence of smooth objects, the stuff

of SDG’s coceptual basis.27

In conclusion, then, we can see that SDG meets all the criteria laid out in §2.1 and

thus SDG can provide a foundation for mathematics.

25 If we had a notion of Choice in SDG then we could well-order ΓR and thus get to at least Vω1 , but
I cannot see how we could go about constructing a notion of Choice in SDG.

26 At this point I should be honest and remind the reader that I not fully justify the subobject classifier
axiom. While this is of course a hole in my thesis, I do not believe it to be a fatal one.

27 The one problem with this might be the subobject classifier axiom, since one might argue that
building a notion of truth into SDG is akin to pathologically smuggling in a higher-order concept. This
may be the case, but since I have been unable to justify this axiom conceptually this question of pathology
too remains unanswered. I will appeal to the reader’s charitable side and suggest that a successful filling
of the first hole in my thesis will also fill this second hole (that is, the second hole is a subhole of the first!).
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Chapter 5

The autonomy of set theory and

synthetic differential geometry

We now come to the second part of my primary thesis, that SDG can provide an au-

tonomous foundation for mathematics. Before we apply the criteria from §2.2 to orthodox

set theory and SDG, we need to address the distinction between orthodox and näıve set

theory. Näıve notions of membership are based on our intuitions and to not appeal to

notions specific to orthodox set theory. For example, when we say ‘SDG contains an object

R’, we are in no way appealing to ZFC or the cumulative hierarchy. As such, when we

consider the different criteria of autonomy, SDG can appeal to näıve notions without being

dependent on orthodox set theory.

The logical autonomy of SDG and set theory is the easiest criterion of autonomy

to demonstrate. Set theory is formulated in the language of set theory, while SDG is

formulated in the language of category theory. While both languages are built from

standard first-order logic, the non-logical symbols are different: set theory has P and only

one type of variable (sets), while category theory has � (composition) and two types of

variable (objects and arrows). Thus, since the very languages in which SDG and set theory

are couched are different, the criterion of logical autonomy of the two theories is satisfied.

We turn to epistemic autonomy. The epistemic autonomy of set theory from SDG

is readily demonstrated: there are countless mathematicians and philosophers – myself

included! – who have learnt set theory without even knowing what SDG stands for. The
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converse is more involved, however. The issue of the epistemic autonomy of SDG from set

theory is complicated by historical developments and pedagogy. Set theory came about

over fifty years before SDG did, so by the time SDG was on the scene, all the textbooks

were (implicitly or explicitly) written in terms of set theory. Thus, when mathematicians

come to learn SDG, they have already learnt set theory and thus it is difficult to determine

exactly what role set theory plays in the learning of SDG. However, we can still see

that SDG is epistemically autonomous with respect to set theory. For example, if one

studies [23], one notices the great care that McLarty has taken great care to develop the

whole of topos theory, including SDG, without appealing to orthodox set-theoretic notions;

indeed, if one examines my exposition one will find the same. Now, in order to understand

SDG, one certainly requires an understanding of näıve set-theoretic notions, but this does

not make SDG epistemically dependent upon orthodox set theory. Thus SDG does indeed

have epistemic autonomy from orthodox set theory.

We now come to justificatory autonomy. The conceptual bases for set theory and

SDG are quite distinct. Set theory is based upon the cumulative hierarchy, a discrete,

(mathematically) concrete structure, while SDG is based upon the notions of smoothness

and isomorphism. Figuratively speaking, the two conceptual bases are polar opposites.

As such, SDG has justificatory autonomy with respect to set theory (and vice versa).

In conclusion, SDG meets all the criteria of autonomy with respect to set theory and

thus provides an autonomous foundation for mathematics. Thus our primary thesis is

shown. Let us now consider our secondary thesis, that of mathematical pluralism.
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Chapter 6

Conceptual bases and

mathematical pluralism

In this last chapter we show that my primary thesis lends credence to a form of mathe-

matical pluralism.

We saw in the previous chapter that set theory and SDG have distinct conceptual

bases. Set theory is based upon the discrete and the concrete.1 Sets live in the cumulative

hierarchy, a rigid structure, and the set-theoretic real line is punctiform. SDG, on the other

hand, is based upon smoothness, a special case of cohesiveness, and isomorphism. Objects

in SDG exist uniquely only up to isomorphism, and in SIA the continuum is a cohesive,

non-punctiform whole. These two theories point to two general conceptual dichotomies:

discreteness and cohesiveness; and concreteness and isomorphism. These two dichotomies

are orthogonal; that is, any one of the four combinations can be embodied in a theory, for

example:

discreteness cohesiveness

concreteness set theory intuitionism2

isomorphism ETCS SDG

This lends evidence to a form of conceptual mathematical pluralism, since different

theories capture different conceptual bases. However, one might be able to capture a
1 By describing a mathematical entity to be concrete, we mean that it is determined absolutely, and

not just up to isomorphism.
2 The intuitionistic continuum is very cohesive: one can remove countably many points and retain

cohesiveness ([6]). Van Dalen describes the intuitionistic continuum as being “syrupy” in nature. This is
a nice analogy: no matter how hard you try, you can’t cut treacle in two.
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concept X in a theory based on concept Y . For example, in set-theory one builds R out

of points, but to reflect conceptions of cohesiveness one imposes the Euclidean topology

on R, which is cohesive in this topology sense: one cannot decompose R into two disjoint

open sets. Likewise, in SDG one can perform set theory by using discrete subspaces. Thus

one might think the choice of conceptual basis is arbitrary. Indeed, why not stick with set

theory? Its axioms are straightforward, stated in simple classical logic, not the recondite

internal language of a topos. I have two arguments against this, one philosophical and one

mathematical.

There are various philosophical reasons why one might wish to explore theories based

on different conceptual bases. For example, although we have been avoiding metaphysical

issues, one might want to explore the mathematics of a certain ontological position. For

example, an atomist might like to explore the mathematics of discrete theories, while a

synechist3 may wish to see how much mathematics one can develop starting from the

concept of cohesiveness. Another philosophical reason for exploring different conceptual

bases is for the very reason that we can express one concept using another: is it not

interesting that one can formulate notions of continuity in set theory, a discrete theory?

This brings us to our mathematical argument.

Studying different conceptual bases is, quite simply, mathematically interesting. For

example (as I suggested earlier) investigating the set-theoretic power of SDG would make

an excellent topic of research, and the study of models of SDG in set theory is well

developed (see pp. 224–226 of [23]). Furthermore, recall the many notions of sets discussed

in §3.3. It is through the exploration of new concepts that new and exciting discoveries

are made; category and topos theory are excellent examples of this.

So there are both philosophical and mathematical reasons for investigating theories

based on different concepts. But what about exploring different theories based on the

same concept? As we saw with set theory and SDG there are different ways of formalising

the same conceptual basis. For example, the Principle of Microstraightness and the Archi-

median Method are just one way of proceeding from the concept of smoothness; there

are many different axiomatisations of SDG (see p. 224 of [23]). Exploring the different
3 This is a useful term introduced by Bell in [3]: he defines synechism to be the doctrine that nature

is continuous, i.e. the opposite of atomism.
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ways in which one can turn a concept into rigorous mathematics is of course interesting

mathematically, and can also be so philosophically. For example, Hilbert’s programme,

which was an attempt to base mathematics on a sophisticated synthesis of finitism and

formalism, was knocked down in a stroke by a purely technical result, Gödel’s incomplete-

ness theorems. Gödel only discovered these beautiful results because of the move in (the

philosophy of) mathematics at that time towards formalism, a philosophical concept.

We can see then that there are many reasons, both philosophical and mathematical,

for adopting a form of conceptual mathematical pluralism. Sticking to just one theory,

be it set theory or SDG, is like viewing a landscape from just one place: to get the full

picture, you need to move around.
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Chapter 7

Conclusion

We developed various criteria that a theory must meet in order to provide a foundation for

mathematics and, furthermore, to provide an autonomous foundation. We applied these

criteria to set theory and synthetic differential geometry, demonstrating our primary thesis

that synthetic differential geometry can provide a foundation for mathematics autonomous

from that provided by ZFC and the cumulative hierarchy. We then drew conclusions from

this, arguing for a form of conceptual mathematical pluralism.
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