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Abstract

In this essay we shall examine the effects of Gödel’s incompleteness theorems on Hilbert’s Pro-

gramme, focusing on the second theorem. We shall conclude that while Gödel’s theorems are

devastating for Hilbert’s hope for a proof of consistency, they do not affect the underlying structure

of Hilbert’s Programme, the dichotomy between contentual (finitary) and ideal mathematics.1 We

shall also respond in detail to the claim by Detlefsen in [5] that the second theorem does not end

hopes for a consistency proof.

1 Introduction

In §2 we shall outline Hilbert’s Programme.2 In §3.1 we shall state and sketch the proofs of the

incompleteness theorems, and in §3.2 we shall demonstrate how they affect Hilbert’s Programme.

§4 will address the question of whether the arguments in §3.2 are in fact correct, and we shall

conclude in the affirmative. In §4.1 we shall look at the precise nature of finitary mathematics and

discuss whether the proofs of Gödel’s theorems are in fact finitary, concluding that they indeed are;

and in §4.2 we will refute the most sophisticated argument put forward against our thesis, namely

that in [5]. §5 will see how we can deal with the aftermath of Gödel’s theorems, in which we shall

argue our main thesis. Finally, in §6 we shall draw our conclusions.

2 Hilbert’s Programme

Hilbert’s Programme was outlined in the early 20th century by the great mathematician David

Hilbert. It was an attempt to put mathematics onto solid foundations after the discovery of

paradoxes in set theory, the most famous of which being Russell’s Paradox.3 Hilbert gave the most

developed outline of his programme in [8], and we shall take this as our main guide for this section.

1 This is not to say that I think that the underlying structure is a good philosophy of mathematics, but rather that
Gödel’s theorems do not add to its problems.

2 We shall not discuss the various general philosophical aspects of Hilbert’s Programme, except those that Gödel’s
theorems relate to directly. I will however, for the sake of the interested reader, try to highlight such general issues in
passing, doing my best to suggest further reading.

3 We shall not discuss the historical or philosophical motivations behind the development of Hilbert’s Programme
in detail. There are many good texts to be found that do go into these issues, some examples being [5], [6], chapter IV
of [10], [11], [12], chapters 2 and 3 of [13], and chapter 6 of [15].
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Let us outline the underlying structure of Hilbert’s Programme. Hilbert divided mathematical

statements into two classes: contentual and ideal.4 We shall discuss them in turn.

A detailed discussion of the nature of (semantic) content is beyond the scope of this essay, but

for our purposes the following rough characterisation is sufficient: A statement has content, i.e. is

contentual, if it makes a statement about the world. As such, contentual mathematics is necessarily

consistent (assuming that the world is consistent) and bivalent, i.e. every statement is either true or

is false.5 But what constitutes contentual mathematics? Well, in Hilbert’s philosophy, contentual

mathematics is precisely finitary mathematics. We shall discuss the nature of finitary mathematics

in §4.1, but for the time being it can be thought of as arithmetic. Importantly, by our previous

remark, finitary mathematics is thus necessarily consistent and bivalent.

We now come to ideal statements. Unlike contentual statements, ideal statements do not have

content; they are used primarily for their instrumental value, such as mathematical simplicity or

scientific applicability. For example, in analysis one introduces the number i � ?�1 in order to

deal with problems that cannot be solved with real numbers alone. According to a Hilbertian,

however, i does not in fact exist, other than as a symbol, and is used simply for instrumental value.

To quote Hilbert, we introduce i ‘to preserve in simplest form the laws of algebra’ ([8], p. 145); i

is an ‘ideal element’, and statements in which it occurs are ideal.

So, in the dichotomy of finitary and ideal mathematics, ideal statements are the invention of

mathematicians, while finitary ones are discovered by mathematicians. Finitary mathematics is the

foundation upon which mathematicians build (ideal) mathematics. The philosophical merits and

drawbacks of such an ontology – regardless of Gödel’s theorems – cry out for a detailed discussion,

but they are outside the scope of this essay; an interested reader may wish to read chapter 5 of [10]

and chapter 2 of [13].

Prima facie this dichotomy between contentual and ideal mathematics looks interesting, but

after a little thought we come to the following question: how exactly are we to conduct ideal

mathematics if it has no content? Well, in order to conduct ideal mathematics, we can use formal

languages. This works because a formal language requires no interpretation of the symbols; one

simple needs to manipulate them correctly. Hilbert, who championed this approach to logic, put

it best himself: when describing his rigorous axiomatisation of Euclidean geometry, he said, ‘One

must be able to say at all times – instead of points, straight lines, and planes – tables, chairs, and

beer mugs’ (p. 57 of [12]).

The precise formulation of our formal language does not matter for the purposes of this es-

say; our only technical requirement is that it be recursively axiomatisable, which we shall assume

4 In the literature, the word ‘real’ is often used instead of ‘contentual’ in this context. I feel that the term ‘contentual’
is better, since it avoids confusion with statements referring to the mathematics of the real line R, which are often in
fact ideal in the sense of Hilbert’s Programme. Moreover, ‘contentual’ is a much better translation of ‘inhaltlich’, the
original German word that Hilbert used.

5 Throughout this essay we shall assume that all statements and formulas are well-formed; that is, they obey the
syntax of the language to which they belong.
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throughout.6 But for the sake of clarity, we shall take our formal language to be classical first-order

logic (or perhaps second- or higher-order; it doesn’t really matter). Indeed, it was Hilbert, with his

student Bernays, who first formulated what we know today as first-order logic in a series of lectures

at Göttingen during 1917–1921, so this seems appropriate.

Let us take this opportunity to clarify some terminology and notation. By a formal system

(or just system), we shall mean a theory built from a logical language and a set of axioms. For

example, by the system of Peano Arithmetic (PA), we mean the language LPA � t0, 1,�, �, u,
together with the usual axioms. By the prefix meta-, we mean it in the usual sense to denote

something outside the formal language in question. For example, the statement ‘Peano Arithmetic

is a powerful system’ would be a metastatement, since it is a statement about PA, rather than a

statement in PA; in this example English would be the metalanguage and PA would be the object

language. I have spelled this point out because it is very important that we make this distinction

clear.

So far, so good: we have outlined the underlying structure of Hilbert’s Programme, but we

now need to describe Hilbert’s Programme itself. Hilbert wanted to place mathematics on firm

foundations, and he thought the best way to do this was to prove, using only finitary methods, that

ideal extensions of finitary mathematics are consistent ([8], pp. 150–151). After all, it would be no

good proving theorems in an ideal system if the system in question turned out to be inconsistent.

So we now know the goal of Hilbert’s Programme; we shall see that Gödel’s theorems show that

this goal cannot be achieved. But before we move on, three digressions are in order.

Our first digression regards Hilbert’s hope for completeness. This wasn’t so much an aim of

Hilbert’s Programme as it was an underlying belief: Hilbert assumed that every properly formulated

problem in mathematics can be solved.7 Hilbert’s belief in such a hope is perhaps best illustrated

by the epitath on his gravestome: ‘Wir müssen wissen, wir werden wissen’ (‘We must know, we

will know’).8 We shall see in §3.2 that Gödel’s first incompleteness theorem shows this belief to be

misplaced.

Our second digression regards the subtle link between consistency and conservativeness. Roughly

speaking, an extension is conservative over its base if it cannot prove anything new about its base.

Thus, it would seem that an ideal extension of finitary mathematics is consistent iff it is conserva-

tive over its finitary base.9 Why? Well, consider a finitary statement ϕ. Since finitary mathematics

is bivalent, ϕ is either true or false; without loss of generality, assume that it is true. The only way

an ideal extension could prove something new about ϕ would be to prove it false, which would be

a contradiction if our extension were consistent. Conversely, if an ideal extension is inconsistent, it

6 For the uninitiated, this means that we could programme a computer, say in C++, to check whether any given
formula obeys the syntax and whether any given use of a rule of inference or an axiom is valid. This can be and is indeed
done: for example, the programme Fitch that accompanies [2] does precisely this.

7 This is what Detlefsen calls the Axiom of Solvability in [6].
8 Further evidence for Hilbert’s faith that there is no ignorabimus in mathematics can be found on p. 150 of [8] and

p. 81 of [12].
9 In [5] and [16], the conservativeness of ideal mathematics over finitary mathematics is called real-soundness.
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can prove anything, in particular that ϕ is false, which is a new finitary statement. Unfortunately,

things aren’t quite so simple as this, for while finitary mathematics is bivalent, there is a question

as to whether finitary mathematics is closed under negation (as we shall see in §4.1), which leads

to problems formalising the above argument. We do not have space to go into this issue, but

discussions can be found in Chapter 29 of [16] and on pp. 124–129 of [5].

In our last digression, I would like to raise a point that I have not seen discussed in the literature:

What is the Hilbertian to make of an ideal system that is not an extension of finitary mathematics?

For example, neither group theory or graph theory appear to be extensions of arithmetic. Indeed,

even geometry, Hilbert’s forte, does not appear to be an extension of arithmetic. It would seem

that by ideal mathematics, Hilbert had in mind analysis or infinitary set theory, but he must have

been aware of these other ideal theories. My only conclusion is that he would have seen them as

extensions of finitary mathematics in the sense that they should be studied using finitary proof

theory (which we shall discuss in §4.1). Okay, digressions over.

3 Gödel’s theorems

In §3.1 we shall state and sketch the proofs of Gödel’s incompleteness theorems. Then in §3.2 we

shall describe how they are significant for Hilbert’s Programme.

3.1 The incompleteness theorems

In this section we shall start by quickly going over some necessary background material. We will

then state and sketch the proofs of Gödel’s first and second incompleteness theorems. We will finish

by stating and sketching the proof of an improvement of the first theorem by Rosser. Technical

details can be found in [3] and [16].

Before we can state the theorems, we need to go over extensions of arithmetic and ω-consistency.

We shall start with the former. The base system of arithmetic that we will be using is EA (El-

ementary Arithmetic). The precise details can be found on p. 236 of [16], and we shall go over

them in §4.1, but roughly speaking, EA is a system of arithmetic in which one can perform basic

arithmetic, exponentiation and bounded induction.10 We then define (in a technical sense) T to be

an extension of EA iff LEA � LT and every axiom of EA is an axiom of T .

Let us now discuss ω-consistency. Before we can state the definition, we need to describe how we

can express numerals in a formal system. When we are referring to numerals in the metalanguage,

we denote them in normal font, e.g. 1, 2, 3, or in italics, e.g. k,m, n. However, a formal language

has a strictly defined set of permissible symbols, and numerals are built up in a precise way; we use

bold type to highlight this distinction. For example, in EA we build up numerals using a logical

constant symbol 0 (which should be thought of as the interpretation of 0 in EA) and a unary

function symbol S (which should be thought of as the interpretation of the successor function in

10 EA is often denoted as ‘I∆0 � exp’ in the literature; I have chosen to go with ‘EA’ for the sake of brevity.
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EA). So, for example, if we wanted to express 3 in EA, we would write SpSpSp0qqq. Now, expressing

numerals in this way would soon become very long-winded, so we introduce some shorthand: To

express the numeral n in EA, we write n. So, to express 3 in EA, for example, we would write 3.

We can now define ω-consistency:

Definition 3.1. An extension of arithmetic T is ω-inconsistent iff for some formula ϕ, T $ ϕpnq
for every natural number n but T $  @xϕpxq. T is ω-consistent iff it is not ω-inconsistent.

ω-consistency implies consistency, but the converse does not hold. Why? Well, the former is

easy to prove via a contrapositive argument: if T is inconsistent, then it can prove anything, in

particular ϕpnq for all n and T @xϕpxq, and thus is ω-inconsistent. The latter is slightly harder

to prove: Let us contruct a theory of arithmetic W whose language is LW � t0,S, ϕu, where ϕ is

a one-place relation symbol, and whose axioms consist of  @xϕpxq and the schema ϕpnq for all n.

W is then consistent (since it does not have any form of induction) but ω-inconsistent. Now, we

will initially require ω-consistency for Gödel’s first incompleteness theorem, although we shall state

an improvement by Rosser that weakens this requirement to consistency. However, even without

this improvement, Gödel’s theorem would still be significant, since if we want a formal system to

capture what we mean by arithmetic, it had better be ω-consistent. We shall state the theorems:

Theorem 3.2 (Gödel’s first incompleteness theorem). Let T be a ω-consistent extension of EA.

Then there exists a sentence ϕ of T such that T & ϕ and T &  ϕ.11

Theorem 3.3 (Gödel’s second incompleteness theorem). Let T be a consistent extension of EA.

Then T cannot prove its own consistency.

The key idea behind the proofs is Gödel numbering. Gödel’s genius was to turn statements

about arithmetic into statements of arithmetic. He did this by coming up with a method of turning

formulas into natural numbers, and vice versa. Let us illustrate this with an example. Suppose our

language consists of the symbols

‘D’, ‘ ’, ‘x’, ‘P ’, ‘(’, and ‘)’.

So an example of a formula in this language would be ‘Dx P pxq’. We can label the symbols of our

language with numbers:

D  x P p q
1 2 3 4 5 6

We can then write our formula ‘Dx P pxq’ as the number

21 � 33 � 52 � 74 � 115 � 133 � 176;

the indices of the successive primes correspond to the labels of the symbols. By elementary calcu-

lation, one finds this number to be equal to 27682986410779072423050; this is the Gödel number of

‘Dx P pxq’. So, we know how to encode formulas as numbers, but how can we decode them? Well, by

11 Such a sentence is said to be undecidable.
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the Fundamental Theorem of Arithmetic (which says that every natural number has a unique prime

factorisation, up to the order of the factors), if we were given the number 27682986410779072423050,

we could decompose it into its prime factorisation and recover the formula ‘Dx P pxq’ (since we

order the primes). With this technique under our belt, we can introduce some notation. We use

so-called ‘Quine’ or ‘corner quotes’ (xϕpxqy) around a formula to denote the numeral in the system

that corresponds to the Gödel number of that formula. So, in our example,

xDx P pxqy � 27682986410779072423050.

We now know how to use the language of arithmetic to talk about arithmetic. But how about

proving statements about arithmetic in arithmetic? Well, the remarkable thing is that EA can in

fact prove a great deal about itself. In particular, EA can prove statements about what it can

prove: we shall not go into the details, but we can introduce a predicate ‘PrvT ’ into EA such that

the following holds for every sentence A of T :

T $ PrvT pxAyq iff T $ A (1)

All we need now is the following lemma, which again we shall not prove. This is Gödel numbering

in action:

Lemma 3.4 (Diagonalisation Lemma). Let T be an extension of EA. Then for every formula ϕ

of one free variable, there exists a sentence γ of T such that T $ γ Ø ϕpxγyq.12

We can now prove the first theorem. Using the Diagonalisation Lemma and the proof predicate

‘PrvT ’, there exists a sentence G of T such that

T $ G Ø  PrvT pxGyq.13 (2)

We now ask the question ‘Can T prove or disprove G?’ Well, first suppose that T proves G; that

is, T $ G. Then, by (1), T $ PrvT pxGyq. But by (2), we have T $  PrvT pxGyq, contradicting T ’s

consistency. Now suppose that T disproves G; that is, T $  G. Then by (2), T $ PrvT pxGyq. But

then by (1), T $ G, again contradicting T ’s consistency. So T & G and T &  G and Theorem 3.2

is proved. Stunning.

So how do we prove the second theorem? Well, we shall not go into the details – although we

shall discuss some important aspects of them in §4.2 – but we prove Theorem 3.3 by formalising

the proof of Theorem 3.2 in T . Using the predicate PrvT , we come up with a consistency sentence

of T , which we denote ConT :
 Dypy � xPrvT px0 � 0yqyq.14 (3)

By ‘formalising the proof of Theorem 3.2 in T ’, we mean that we prove that

T $ ConT Ñ G. (4)

12 We have ϕpxγyq, rather than ϕpγq, since ϕ is a formula of arithmetic, and thus must take a numeral as its argument,
not a formula.

13 This sentence G is often called the Gödel sentence of T .
14 Putting ‘0 � 0’ is fairly arbitrary here; we could replace it with any other absurdity, say ‘0 � 1’ or ‘1� 1 � 3’.
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By (4), if ConT were provable in T , then we could prove G in T , contradicting (our proof of)

Theorem 3.2. Thus T cannot prove its own consistency, and we have Theorem 3.3.

Before we move on, we shall quickly mention and sketch the proof of an improvement on Theorem

3.2 due to Rosser ([14]). In the statement of Theorem 3.2, we had to assume ω-consistency. Rosser

showed that we can weaken our requirement to just consistency.

Theorem 3.5 (Rosser). Let T be a consistent extension of EA. Then there exists a sentence ϕ of

T such that T & ϕ and T &  ϕ.

The proof is similar to that of Theorem 3.2, but instead of using the Gödel sentence G that

informally says ‘I am unprovable in T ’, we use a Rosser sentence, which informally says ‘If I am

provable in T , then there is a shorter proof of my negation.’

Before we move on to showing how Gödel’s theorems affect Hilbert’s Programme, let us introduce

two abbreviations. We shall refer to Theorem 3.3 as ‘(G2)’. Since Theorem 3.5 is an improvement

on Theorem 3.2, we shall refer to Theorem 3.5 as ‘(G1)’ (it’s best to use one’s sharpest tools).

3.2 The Standard Argument

In this section we shall outline the so-called Standard Argument (SA)15 that Gödel’s theorems

undermine Hilbert’s Programme. We shall briefly mention how (G1) shows Hilbert’s belief in

completeness to be näıve,16 but we shall focus on the effect of (G2) on the hope for a finitary

proof of consistency.17 We shall finish by pointing out that while (G2) shatters hopes for a finitary

proof of the consistency of an ideal system, Gödel’s theorems do not in fact affect the underlying

dichotomy of finitary and ideal mathematics that underlies Hilbert’s Programme.

The key premise behind (SA) is that finitary mathematics is an extension of EA. As we shall

see in §4.1, there is some debate over the precise nature of finitary mathematics, and we shall argue

that finitary mathematics must at least contain EA, but in this section we shall simply take it as

read that finitary mathematics is an extension of EA.

So how does (G1) show that Hilbert’s belief that there is no ignorabimus in mathematics to be

misplaced? Well, (G1) tells us that for any extension of arithmetic, there are always statements

that we can neither prove nor disprove. Moreover, the sentence G in the proof of Theorem 3.2 is

true, since it says of itself that it cannot be proved, which indeed it cannot. So we have found a

true but unprovable statement. So much for completeness!

We now come to the second incompleteness theorem. We shall demonstrate its effect on Hilbert’s

Programme by reductio ad absurdum. Let F denote finitary mathematics and let I be an extension

of F ; we shall abuse notation and write this as F � I. Thus, since we are taking it as read that

EA � F , we have EA � I. The aim of Hilbert’s Programme is to come up with a proof in F of

15 We have taken this term from [5].
16 For a fun and highly original exposition of this argument, I recommend [1].
17 There are some people who believe that in fact (G1) alone shows that a finitary proof of consistency is unobtainable.

We do not have room to discuss it here, but an interesting critique can be found in the Appendix of [5].
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I’s consistency. So, to obtain a contradiction, suppose we have such a proof; that is, F $ ConI .

Now, (G2) says that I & ConpIq (since EA � I). But since F $ ConI and F � I, a fortiori we

have I $ ConpIq; this is a contradiction. Therefore a finitary proof of the consistency of I cannot

be carried out, and consequently neither can Hilbert’s Programme.

The devastating effect of (G2) on Hilbert’s Programme is plain to see. But what do Gödel’s

theorems say about the dichotomy of finitary and ideal mathematics that underpins Hilbert’s Pro-

gramme? Well, they say very little: while (G1) and (G2) prevent the aim of Hilbert’s Programme,

namely a finitary proof of ideal consistency, they do not affect its foundation. We shall discuss this

in more depth in §5.

4 Do Gödel’s theorems actually affect Hilbert’s Programme?

4.1 Finitism

In this section, we shall address our assumption in §3.2 that finitary mathematics is an extension

of EA. To do this, we will discuss the nature of finitary mathematics.

Unfortunately, Hilbert never stated precisely what he considered to be finitary mathematics,

which has led to much philosophical debate. We will not enter into this debate in detail, but we

shall deal with those issues that are relevant to the scope of this essay.

Let us start by outlining of the key idea behind finitary mathematics. The main objects of

finitary mathematics are ‘numerical symbols’ (p. 192 of [8]), for example:

|, ||, |||, |||||, |||||||||

These are often referred to as Hilbert strokes.18

While Hilbert never stated precisely what he considered finitary mathematics to be, in [8] he

did specify some conditions. Let us specify them:

(i) The main objects are Hilbert strokes.

(ii) The rudimentary statements are those that do not involve unbounded quantification,19 such

as 4   5 or @x   10px� 3   20q. They can be built up using the usual logical connectives of

Ñ, _, ^ and  .

(iii) For unbounded quantification, we have schemas. So, the statement @x x � 1 � 1 � x isn’t

a finitary statement itself, but becomes one when we replace x by an actual numeral. Im-

portantly, the negation of a schema is not a finitary statement, since we cannot check all the

numbers for a counter example. This leads to problems for formalising finitary mathematics,

since it makes it unclear whether finitary mathematics is closed under negation (as we men-

18 These strokes are considered to be types, not tokens; this does of course lead us to the philosophical debate regarding
the type/token distinction, but we shall not discuss it here. For an account of these issues regarding Hilbert strokes, see
pp. 101–103 of [10].

19 Hilbert considered bounded quantification to be finitarily kosher since, in principle at least, one can go through all
the numbers in question and check whether the given statement is true of them.
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tioned in our second digression at the end of §2), but unfortunately we do not have space to

discuss this.

(iv) We only allow contentual induction; that is, induction on rudimentary formulas. Moreover,

the conclusion is only admitted as a schema, as in (iii) above. (See pp. 45–46, 59–62 of [5]

and pp. 94–98 of [13].)

Well, we now know what we have to work with. So what shall we take to be finitary mathe-

matics? There is a lot of debate in this area which do not have space to discuss, so our response

will be brief. Our system EA is weaker a system of arithmetic than the main competitor in the

debate, Primitive Recursive Arithmetic (PRA), which roughly speaking consists of first-order logic,

all primitive recursive functions, and bounded induction (details can be found on pp. 104–105

of [16]).20 Also, EA adheres to (i)–(iii) above. Now, it does not adhere to (iv), since it admits

unbounded quantification, but this is true of all systems based on classical logic, in particular PRA.

However, given a use of unbounded quantification we can interpret it as a schema and thus adhere

to (iv). Accordingly, our assumption in §3.2 that finitary mathematics must be an extension of EA

is justified.

EA consists of Robinson arithmetic (Q), bounded induction (= contentual induction in point

(iv)), and exponentiation. The precise details of Q can be found on pp. 55-56 of [16], but its

language is LQ � t0,S,�, �u and its axioms state basic arithmetical truths, such as the commu-

tativity of + and �, the distributivity of � over +, etc. One axiom that we should point out is

@xpx � 0 Ñ Dypx � Spyqqq. We add exponentiation because Q is too weak to express it (and we

use it for Gödel numbering).

Now, importantly, Hilbert didn’t restrict finitary mathematics to just Hilbert strokes. Hilbert

considered the symbols in a formal system to be finitary objects too, and thus we can talk about

them in a finitary way. This then allows us to use finitary mathematics as metamathematics or

proof theory, i.e allows us to talk about finitary proofs of consistency and so forth, which is of

course crucial for Hilbert’s Programme. We will not go into how Hilbert expounded this finitary

proof theory21, since it is rather technical and, perhaps ironically, Gödel numbering allows us to

use finitary mathematics as our proof theory.

Before we move on to the next section, let us address a question that has received very little

discussion in the literature: Are the proofs of (G1) and (G2) finitary? For if they are not, perhaps a

Hilbertian could argue that they are not valid as metatheorems. The only discussion I can find is on

p. 80 of [5], where Detlefsen claims that (SA) is not finitary, since it involves an implicit universal

quantifier (‘for all extensions of EA...’), but that the argument is still ‘cogent’ and thus must be

addressed. We do not have room to go into a detailed discussion, but let’s make a couple of points.

Firstly, (SA) is finitary, since we can take the universal quantification as a schema. Secondly, the

proofs of (G1) and (G2) only require basic arithmetic and induction; they do not appeal to infinite

20 PRA is supported by Tait ([17]) and, to a lesser degree, Detlefsen (p. 66 of [5]).
21 See the Appendix in [12] for a summary.
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ordinals, unlike Gentzen’s proof of the consistency of PA, for example. Thus, a Hilbertian is not

in a strong position to attack (SA) or the proofs of (G1) and (G2) on a technicality, since they are

certainly finitary “in spirit”. Indeed, it was Hilbert and his student and fellow Hilbertian Bernays

who first rigorously proved (G2) in [9].22 Moreover, Gödel did not initially think that his theorems

were fatal for Hilbert’s Programme (p. 40 of [7]), and Bernays had to win him round to the opposite

position (p. 91 of [5]), which Bernays surely would not have done if he thought something was

(finitarily) wrong with the proofs. All this suggests that Hilbert and his followers considered the

proofs to be finitarily kosher.

4.2 Detlefsen, The Last Son of Hilbert(’s Programme)

In this section we shall consider arguments put forward against the Standard Argument (SA) by

Michael Detlefsen in [5].23 Detlefsen appears to be unique in his belief that Hilbert’s Programme

is unaffected by Gödel’s theorems, and we shall conclude that his arguments are flawed.

Detlefsen puts forward two arguments against (SA):24

The Stability Problem (SP). The statement of consistency in (G2) is just one (class of) state-

ment(s) of consistency. There may be others that can be proved. That is, a formula’s property of

being unprovable may not be a stable property of it being a statement of consistency.

The Convergence Problem (CP). It may not be the case that all finitary proofs in a given ideal

system are ‘feasible’ (we shall discuss what ‘feasible’ means shortly.) That is, finitary mathematics

and feasible mathematics may not converge.

Let us explain how these apparently undermine (SA). The problem that (SP) causes for (SA)

is clear: If there is a consistency statement of an ideal system I that can be proved in I, then it

may be the case that a finitary proof of the consistency of I can be found. The idea behind (CP)

is that even if (G2) does apply to I, the feasible part of I may not contain EA, and thus we may

be able to use finitary methods that are outside of the feasible part of I to prove the consistency

of the feasible part of I.

We shall argue against (CP) at length. We shall not attack (SP) directly due to lack of space,

but instead we shall show that Detlefsen’s proposed example of a system that can prove its own

consistency is flawed.

Our attack on (CP) will be two-pronged: first we shall attack its foundation, and then, taking

no prisoners, we shall further attack it directly. Detlefsen bases (CP) on what he calls the Thesis

of Strict Instrumentalism (TSI):

‘Of the infinitely many ideal proofs constructible in a given system T of ideal

mathematics, only finitely many of them are of any value of instruments of

22 Gödel only sketched the proof of (G2) in [7]; he planned to prove it rigorously in a later paper but never did (see
footnote 68a in [7]).

23 The reader should note that we have changed some of Detlefsen’s terminology to fit with that of this essay. In
particular, he uses ‘real’ where we use ‘contentual’; c.f. footnote 4.

24 Detlefsen in fact puts forward another argument against (SA), what he calls the Problem of Strict Intrumentalism;
this is very closely related to the Convergence Problem, and thus for the sake of brevity we shall not discuss it.
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human epistemic acquisition.’ ([5], p. 84.)

We then define a proof to be feasible iff it has value as an ‘instrument of human epistemic acqui-

sition.’ Before we argue against (TSI), let us explain why it implies (CP): if only finitely proofs of

an ideal system are feasible, a fortiori, how do we know that all finitary proofs of the system are

feasible?

Detlfsen’s argument for (TSI) is as follows: Checking each line of a proof takes a finite expendi-

ture of time and effort (even if only a small amount), and thus, since we only have a finite amount

of time in which to check proofs, there are only finitely many characters that can appear in a proof,

and hence we have (TSI). Initially this seems like a plausible argument, since indeed there are only

so many hours in a mathematician’s lifetime in which to prove theorems – even David Hilbert had

to sleep. But then we realise that Detlefsen has made the classic mistake of confusing actual infini-

ties with potential infinities. Humans, even after 10,000 generations and with the help of the finest

computers IBM can produce, will only ever produce finitely many theorems. This much cannot

be disputed. However, this is not to say that there is a limit on the number of theorems that can

be proved: every proof is finite, so given enough time and effort, it can be proved. In short, only

finitely theorems will be proved, but infinitely many can be proved.

There is an obvious objection to the above argument: I have confused potential and actual

infinities. Detlefsen can say, ‘you said it yourself: even after 10,000 years, humans will only have

proven finitely many theorems.’ The problem seems to arise over the conception of Hilbert’s Pro-

gramme. I suggest that Hilbert saw ideal mathematics as the realm of mathematical creativity, a

place of boundless exploration, while Detlefsen sees ideal mathematics purely in terms of its ‘value

as an instrument of human epistemic acquisition’ (p. 84 of [5]; slightly adapted) and as such, (TSI)

is valid. On this point we shall have to agree to disagree, for alas our prophet David has moved

on to the great Hilbert space in the sky. But where does this leave us? Well, let us try a different

ploy: for the sake of argument, we shall concede (TSI), but now we shall attack (CP) directly.

To employ (CP) against (SA), Detlefsen changes the conception of a formal system from one of

infinitely many theorems to one of finitely many feasible theorems; we call such a system a feasible

system. So how does Detlefsen propose to set up such a feasible system? After all, Hilbert’s

Programme can only be carried out in this way if we can show how to actually construct such a

feasible system. Detlefsen proposes a method using what he calls Hilbertian residues. He describes

the process on p. 89 of [5]: Let T be a formal system. Successively eliminate proofs from T as

follows:25

(i) Remove all unfeasible ideal proofs of finitary formulas.

(ii) Remove all ideal proofs of finitary formulas that have an equally short and simple finitary

proof.

(iii) Remove all finitary proofs of finitary formulas.

25 I have adapted the precise quotation; in particular, I have used the word ‘finitary’ instead of Detlefsen’s ‘real’.
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Once (i)–(iii) have been carried out, take all the axioms of T that are used in the remaining proofs

and close under logical operations. The new system is the Hilbertian residue of T , denoted TH .

Detlefsen’s idea is that (G2) may well not apply to such a system. Prima facie this looks pretty

good: the system TH may not contain EA, and thus (G2) may not apply to it, while in the meantime

TH contains all the theorems we can feasibly prove. But on a little further thought we notice a very

serious flaw: step (i) is simply not well-defined, let alone effective. Where are we to draw the line

on what counts as feasible and what does not? This is not only a problem of vagueness though:

presumably over time the boundary of feasibility will be pushed forward, since as the centuries go

by our idea of what is feasible will expand. For example, the proof of the Four Colour Problem by

Appel and Hanken in 1976 would no doubt have been considered ‘unfeasible’ in the 19th century,

considering the computing power needed to carry it out. Thus we find that our feasible systems will

be time- (and technology-)dependent, which surely is not anyone’s idea of a formal mathematical

system, let alone Hilbert’s. In fact, this problem of the vagueness and temporal-dependence of

feasibility isn’t just a problem for the particular method of Hilbertian residues: it strikes at the

very core of (CP), for if we don’t know what feasible actually means, how can we talk of finitary

mathematics and feasible mathematics ‘converging’?

Now, one might point out that we may be able come up with a definition of feasible using

computational complexity theory. For example, we might say (perhaps arbitrarily) that a function

is feasible iff it can be carried out in polynomial time. This would eliminate the problem of

vagueness, but we would still have the problem of time- and technology-dependence: In 10,000

years time we might decide that polynomial time is far too limited to draw the line of feasibility,

and that exponential time – or perhaps an even higher complexity class – is more appropriate. Our

objection to Hilbertian residues and (CP) still holds.

We shall finish by demonstrating that Detlefsen’s attempt to show that (SP) cannot be solved

is flawed. He tries to do this by giving an example of a formal system that can prove its own

consistency. The system in question was first developed by Rosser and is based on first-order logic,

but it is equipped with a way of “cheating” inconsistency: We order the sentences of the language,

say lexicographically, and then add the rule that before we can admit a sentence as a theorem

(assuming that we have a conventional proof of it), we check whether it contradicts any previous

theorems: if it does not, then we admit it as a theorem; if it does, then we do not. The system is

consistent by construction.

I called this “cheating” for a reason: This goes against what Hilbert meant by a formal system,

and indeed against what we mean by mathematics. For whether a statement is or is not a theorem

should not be order-dependent; different orderings can lead to different theorems. Moreover, we

can construct such systems that are consistent but nevertheless are very silly: For example, take

EA and add 0 � 0 as an additional axiom. Then place 0 � 0 first in your ordering; now 0 � 0 will

be a theorem of this “consistent” system but 0 � 0 will not. We don’t want this.
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5 Dealing with the Aftermath

In this section we shall argue the main thesis of this essay, that while Gödel’s theorems are devastat-

ing for the aim of Hilbert’s Programme, that of a finitary proof of ideal consistency, the underlying

structure of finitary and ideal mathematics is left unaffected.

How do (G1) and (G2) affect Hilbert’s Programme? Well, we have seen that (G1) shows that

Hilbert’s underlying faith in completeness was näıve and, more importantly, that (G2) shows that

a finitary consistency proof cannot be achieved. But what of the underlying structure of finitary

and ideal mathematics? Do (G1) or (G2) affect that? As we suggested at the end of §3.2, we surely

must conclude that they do not, since neither (G1) nor (G2) says anything about the dichotomy;

they only say what we cannot achieve with the dichotomy.

Now, one might say that the use of finitary mathematics as metamathematics is brought down

by (G2), since we know that finitary mathematics cannot prove ideal consistency. But surely

any other possible metamathematics, if it is to be viable, must contain finitary mathematics, and

thus must also be affected by (G2). In short, (G2) shows us that no metamathematics can prove

consistency, not just finitary metamathematics.

So what is our proposal exactly? Well, we suggest that a Hilbertian may happily carry on using

finitary mathematics as metamathematics and proving ideal theorems, but – in light of (G2) – be

aware that one day they may come across an inconsistency. And, should our Hilbertian discover an

inconsistency in a given ideal system, they must not despair and abandon the system entirely, but

rather go back to the axioms of the system and try to fix the source of the inconsistency. Indeed,

the discovery of an inconsistency does not make all previous work in that system worthless, for

many of the proofs may well not use the inconsistent axiom. Our analogy is that of a scientist who

proposes a theory. If the theory is disproved, our scientist should not simply throw in the towel, but

rather should go back to the drawing board and, if possible, fix the error. This is how science often

develops, and so too can mathematics. Indeed, we offer a major historical example of such a process

occurring in mathematics. When Russell’s Paradox was discovered in 1903, mathematicians saw

the source of the problem, namely unrestricted set-comprehension,26 and set about resolving the

issue. And indeed, just five years after Russell discovered this antimony in Frege’s work, Zermelo

published some axioms of set theory that removed the troublesome construction; these axioms in

fact form the basis of modern set theory.

Our argument is similar to that of Curry, who sees mathematics as the ‘science of formal

systems’ (p. 154 of [4]); that is, the study of what different formal systems can and cannot prove.

But unlike Curry, who is a formalist “all the way down to his metawear,” 27 we point out that

Gödel’s theorems do not force us to change our metamathematics from finitary mathematics. That

is, while Curry takes the view that we need to formalise even our metamathematics in light of

26 The precise source was Frege’s now infamous Basic Law V, which, in modern language, stated that for any property
P , the set tx : P pxqu exists. The problem occurs when we take P to be x R x.

27 I owe this light-hearted description to Øystein Linnebo and Richard M. Nixon.
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Gödel’s theorems, our argument in the beginning of this section shows that this view is mistaken.

Furthermore, our position is in fact better than Curry’s, since building formal systems on contentual

finitary foundations avoids various objections that can be levied against his form of formalism. For

example, Curry has to deal with the contention that all of mathematics cannot consist entirely of

formal systems: mathematics was practised for many centuries before it was ever formalised and

history shows us that, typically, a branch of mathematics is formalised after it has been developed

(see p. 170 of [15]). Our position also avoids the regress of Curry’s formalism: If metamathematics

is itself a formal sytem, then can we not study it just like any other formal system? But this would

require metametamathematics, and so on ad infinitum. Now, there are of course other problems

associated with finitary mathematics as metamathematics, perhaps most importantly its precise

nature, but these problems do not stem from Gödel’s theorems.

6 Conclusion

In this essay we started by covering the nature of Hilbert’s Programme and explaining how Gödel’s

theorems affect it. We addressed the nature of finitary mathematics, concluding that the proofs

of Gödel’s theorems are finitary, and then moved on to rebuke various arguments put forward by

Detlefsen in [5] against the claim that Gödel’s theorems do not affect Hilbert’s Programme. Finally

we considered the aftermath of Gödel’s theorems, concluding that while the hope for a finitary

proof of ideal consistency is completely destroyed by Gödel’s theorems, the underlying structure of

finitary and ideal mathematics is left unaffected.
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