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The motivating example
The study of asymptotic classes stems from a deep application by
Chatzidakis, van den Dries and Macintyre (CDM) in [3] of the Lang–Weil
estimates [10] and the work of Ax [2]:

Theorem (CDM, 1992)
Let ϕ(x̄ , ȳ ) be a formula in the language of rings Lring = {0,1,+, ·}, where
l(x̄) = n and l(ȳ ) = m. Then there exist a constant C ∈ R>0 and a finite set D
of pairs (d , µ) ∈ {0, . . . ,n} ×Q>0 such that for every finite field Fq and for
every ā ∈ Fq

m, if ϕ(Fq
n, ā) 6= ∅, then∣∣∣|ϕ(Fq

n, ā)| − µqd
∣∣∣ ≤ Cqd−1/2 (∗)

for some pair (d , µ) ∈ D. Furthermore, the parameters are definable; that is,
for each (d , µ) ∈ D there exists an Lring-formula ϕ(d,µ)(ȳ ) such that for every
Fq , Fq |= ϕ(d,µ)(ā) iff ā satisfies (∗) for (d , µ).
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N-dimensional asymptotic classes

Macpherson and Steinhorn investigated other classes of finite structures that
satisfy the CDM theorem. [11] To this end they defined the notion of an
asymptotic class as a generalisation of the CDM theorem. The definition
given below is that given by Elwes in [6], which is itself a slight generalisation
of the original definition in [11].

For a class C of L-structures and an arbitrary m ∈ N+, define

Φ := {(M, ā) :M∈ C, ā ∈ Mm}.

Borrowing a term from algebra, we sometimes refer to the elements of Φ as
pointed structures.
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N-dimensional asymptotic classes

Definition (Macpherson–Steinhorn, Elwes, 2007)
Let L be a first-order language, N ∈ N+ and C a class of finite L-structures.
Then C is an N-dimensional asymptotic class iff for every L-formula ϕ(x̄ , ȳ ),
where l(x̄) = n and l(ȳ ) = m,
(a) there exist a finite set D ⊂ ({0, . . . ,Nn} × R>0) ∪ {(0,0)} and a partition
{Φ(d,µ) : (d , µ) ∈ D} of Φ such that for each (d , µ) ∈ D,∣∣∣|ϕ(Mn, ā)| − µ|M|d/N

∣∣∣ = o
(
|M|d/N

)
for all (M, ā) ∈ Φ(d,µ) as |M| → ∞; and

(b) for each (d , µ) ∈ D there exists an L-formula ϕ(d,µ)(ȳ ) such that for every
M∈ C,M |= ϕ(d,µ)(ā) iff (M, ā) ∈ Φ(d,µ).
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N-dimensional asymptotic classes
We call (a) the size clause and (b) the definability clause. If a class C satisfies
(a) but not necessarily (b), then we call it a weak N-dimensional asymptotic
class. We refer to the functions µ| · |d/N as dimension–measure functions.

The precise meaning of the o-notation is as follows: for every ε > 0 there
exists Q ∈ N such that for all (M, ā) ∈ Φ(d,µ), if |M| > Q, then∣∣∣|ϕ(Mn, ā)| − µ|M|d/N

∣∣∣ ≤ ε|M|d/N

or, equivalently (since |M|d/N 6= 0),∣∣∣|ϕ(Mn, ā)| − µ|M|d/N

∣∣∣
|M|d/N

≤ ε.
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Some examples of N-dimensional asymptotic classes
The class of finite fields (N = 1). [3]
The class of finite cyclic groups (N = 1). This is in fact an exact class
(defined later). [11, Theorem 3.14]
Some group- and graph-theoretic examples, in particular the class of
Paley graphs (N = 1). [11, Examples 3.3–3.6, Proposition 3.11]
Families of finite difference fields {(Fpnk+m , σk ) : k ∈ N}, where p is prime,
m,n ∈ N and σ is the Frobenius automorphism (N = 1). [Ryten, PhD
thesis; see [6, §4] ]
For any smoothly approximable structureM (defined later), there exists a
subset of the set of finite envelopes ofM that forms a rk(M)-dimensional
asymptotic class. [6, Proposition 4.1]
Any family of non-abelian finite simple groups of a fixed Lie rank, where N
varies depending on the family. [Ryten, PhD thesis; see [7, Theorem 6.1] ]

See [6], [7], [11] and [12] for further examples, results and exposition.
Daniel Wolf (Leeds) Exact classes and smooth approximation 7 / 22

http://www.dwolf.eu/
https://www.leeds.ac.uk/


History and motivation
R-macs and R-mecs
Smooth approximation
Macpherson’s conjecture

Multidimensional asymptotic classes

We have developed the notion of a multidimensional asymptotic class, a
generalisation of an N-dimensional asymptotic class that captures more
CDM-like behaviour. [1]
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Multidimensional asymptotic classes

For a class C of finite L-structures, recall the set Φ of pointed structures:

Φ := {(M, ā) :M∈ C, ā ∈ Mm}.

Definition (Definable partition)
Let {Φi : i ∈ I} be a partition of Φ. The set Φi is said to be definable iff there
exists an L-formula ψi (ȳ ) with l(ȳ ) = m such that for everyM∈ C and every
ā ∈ Mm, (M, ā) ∈ Φi iffM |= ψi (ā). The partition is said to be definable iff Φi is
definable for every i ∈ I and to be finite iff the indexing set I is finite.
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Multidimensional asymptotic classes, aka R-macs

Definition (Anscombe, Macpherson, Steinhorn, W.)
Let R be any set of functions from C to R≥0. The class C is a multidimensional
asymptotic class for R in L, or R-mac in L for short, iff for any L-formula
ϕ(x̄ , ȳ ), where l(x̄) = n and l(ȳ ) = m, there exist a finite definable partition
Φ1, . . . , Φk of Φ and functions h1, . . . ,hk ∈ R such that for each i ∈ {1, . . . , k},∣∣∣|ϕ(Mn, ā)| − hi (M)

∣∣∣ = o(hi (M)) (1)

for all (M, ā) ∈ Φi as |M| → ∞.

The meaning of the o-notation is as before and we continue with the previous
terminology of size clause, definability clause and weak R-mac.
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Examples of R-macs

Any N-dimensional asymptotic class.
The class of all finite sets, where L = ∅. This is in fact an exact class
(defined later).
The class {(Z/pnZ)m : n,m ∈ N+} of groups, where p is any prime and
L = {+}. [8] Note that this does not fit into the previous framework of
N-dimensional asymptotic classes.
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Non-examples of R-macs
The class C of all finite linear orders in (any expansion of) the language
L = {<} does not form an R-mac for any R.

Proof. Let ϕ(x , y ) be the formula x < y and consider the finite total order
Mn = {a0 < a1 < · · · < an}. Then |ϕ(Mn,ai )| = i . So as we let n increase
and let i vary we define arbitrarily many subsets of distinct sizes. Thus
no finite number of functions from R can approximate |ϕ(Mn,ai )| for all
n, i ∈ N.
Let p be prime. Then the class {(Z/pnZ)m : n,m ∈ N+} of rings in (any
expansion of) the language L = {+,×} does not form an R-mac for any R.

Proof. Let ϕ(x , y ) be the formula ∃z (x = z × y ). Then
|ϕ(Z/pnZ,pi )| = pn−i . So as we let n increase and let i vary we define
arbitrarily many subsets of distinct sizes and thus no finite number of
functions from R can approximate |ϕ(Z/pnZ,pi )| for all n, i ∈ N. (Notice
that we didn’t need to consider m.)
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R-mecs

There is a stronger notion of a multidimensional exact class for R in L, or
R-mec in L for short. This is where the previous definition holds, but where
we have equality instead of the approximation (1) , i.e. for each i ∈ {1, . . . , k},

|ϕ(Mn, ā)| = hi (M) (2)

for all (M, ā) ∈ Φi .

Note that we often refer to R-mecs as exact classes. Also note that while an
R-mec is necessarily an R-mac, an R-mac need not be an R-mec. For
example, the class of finite fields and the class of Paley graphs are both
R-macs, but they are not R-mecs. [1]
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Smooth approximation

Smooth approximation was invented by Lachlan the 1980s and then further
developed by him and others, e.g. [4], [5] and [9].

Definition (Smooth approximation)
LetM and N be L-structures. N is a homogeneous substructure ofM,
notationally N ⊆hom M, iff N is an L-substructure ofM and for every k ∈ N+

and every pair ā, b̄ ∈ Nk , ā and b̄ lie in the same Aut(M)-orbit iff ā and b̄ lie in
the same Aut{N}(M)-orbit, where Aut{N}(M) := {σ ∈ Aut(M) : σ(N) = N}.

An L-structureM is smoothly approximable iffM is ℵ0-categorical and there
exists a sequence (Mi )i<ω of finite L-structures such thatMi ⊆hom M and
Mi ⊂ Mi+1 for all i < ω and

⋃
i<ω Mi = M. We say thatM is smoothly

approximated by theMi .
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Examples of smoothly approximated structures
(1) Trivial example: LetM be a countably infinite set in the language of

equality. EnumerateM by (mi : i < ω) and letMi = {m0, . . . ,mi}. Then
eachMi is a finite homogeneous substructure ofM andM =

⋃
i<ωMi .

(2) LetM be the unique countable structure consisting of infinitely many
E1-equivalence classes and a refinement E2 such that each
E2-equivalence class is also infinite, i.e. first partitionM into infinitely
many E1-classes and then partition each E1-class into infinitely many
infinite E2-classes. Enumerate the E1-classes by (ej : j < ω) and the
E2-classes within each ej by (ejk : k < ω). Finally, enumerate the elements
of each ejk by (ejkn : n < ω). LetMi := {ejkn : j , k ,n ≤ i}. Then eachMi is
a finite homogeneous substructure ofM andM =

⋃
i<ωMi .

(3) LetM be the direct sum of ω-many copies of Z/p2Z, where p is some
fixed prime. LetMi consist of the first i copies of Z/p2Z. Then eachMi is
a finite homogeneous substructure ofM andM =

⋃
i<ωMi .
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A link between smooth approximation and exact
classes

Smoothly approximable structures provide a generic example of R-mecs:

Proposition (W.)
LetM be an L-structure smoothly approximated by finite homogeneous
substructures (Mi )i<ω. Then there exists R such that {Mi : i < ω} is an
R-mec in L.

The proof makes essential use of the Ryll-Nardzewski theorem and a result of
Kantor–Liebeck–Macpherson in [9].

An obvious question is the following: What’s R? This brings us to the work of
Cherlin and Hrushovski in [5].
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Cherlin–Hrushovski

Cherlin and Hrushsovski develop in [5] a very deep structure theory around
ℵ0-categoricity and smooth approximation. Key to this are the notions of Lie
coordinatisation and quasifiniteness, which turn out to equivalent to smooth
approximation. We state a theorem arising from [5] that is germane to our
current work, namely an adapted version of Theorem 6 from that text:

Theorem (Cherlin–Hrushovski, 2003)
Let L be a finite language and d ∈ N+. Define C(L,d) to be the class of all
finite L-structures with at most d 4-types. Then there is a finite partition
F1, . . . ,Fk of C(L,d) such that the structures in each Fi smoothly approximate
an L-structureMi . Moreover, the Fi are definably distinguishable: For each
Fi there exists an L-sentence χi such that for allM∈ C(L,d) above some
minimum size,M |= χi if and only ifM∈ Fi .
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Macpherson’s conjecture

Another relevant result from [5] is Proposition 5.2.2, which provides precise
information about the sizes of definable sets in finite homogeneous
substructures. These two results from [5], together with the previous
proposition, yield a proof of the following result, as conjectured by
Macpherson, although some details still need to be worked out:

Theorem (almost)
Let L be a (finite?) language and let d ∈ N+. Define C(L,d) to be the class of
all finite L-structures with at most d 4-types. Then C(L,d) is an R-mec, where
R is a semi-ring of polynomials in the sizes of the base finite fields.

Further properties of R can be given, but in order to state them we would
need to go in a lot more detail.
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Thank you for your attention!

Slides available at:

www.dwolf.eu/research
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