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Abstract

We develop the theories of Peano Arithmetic and Zermelo-Fraenkel set theory minus
the Axiom of Infinity with the aim of proving the bi-interpretability result of [8].
We then very briefly discuss the recent result proved in [12]. The novelty is that we
take a bottom-up approach to these results, assuming no particular knowledge of
formal logic, and that we offer more detail than is usually given in this area.
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1 Introduction

The aim of this essay is to develop, from the ground up, interpretations between
finite set theory and arithmetic. Accordingly, this essay has been written in mind
for a fourth-year mathematics student who has little to no training in formal logic,
in particular a Warwick MMath student. Knowledge of formal logic will of course
be beneficial, and indeed there are some parts of this essay which only those readers
with some previous knowledge of logic will properly appreacite, but it will not be
essential. We also aim to give more detail than is usually found in treatments of
this subject; we shall develop finite set theory particularly rigorously due to its
interesting yet accessible subtlties.

In Section 2 we shall cover the basics of formal logic and informally look at
models. In Section 3 we will develop the theories of Peano Arithmetic and Zermelo-
Fraenkel set theory minus the Axiom of Infinity. We shall develop these theories in
their own right, especially the latter, although we shall always have interpretations
in mind. In Section 4 we shall develop the theory of interpretations, firstly via an
example and then more abstractly, briefly mentioning a categorical approach. In
Section 5 we shall go through the Ackermann interpretation of finite set theory in
arithmetic. In Section 6 we shall then cover its inverse. Finally in Section 7 we shall
very briefly look at a recent result in this area.

2 Background logic

2.1 Formal languages

In this subsection we shall give a brief overview of formal languages and how we shall
deal with them. Our coverage really will only be brief and so some understanding of
formal logic would be very beneficial, although three years of university mathematics
should be enough. A curious and/or confused reader can find help in any one of
the many books that have been written on this area; the author is particularly fond
of [4] and [2], the latter being more elementary and less mathematical (it is primarily
aimed at philosophy students). Also, [13], although not an introduction to formal
logic, has some wonderful exposition of formal languages in its third chapter.

A formal language is a language with a strictly defined vocabularly and syntax.
There are a whole host of different formal languages around in mathematics, but
the vast majority have the same underlying structure: each has a set of constant
symbols, possibly empty; an arbitrarily large set of variables;1 a set of finite-arity
relation symbols, again possibly empty (although that would be rather boring);
the identity/equality symbol ‘=’; the Boolean connectives ‘_’, ‘^’, ‘ ’, ‘Ñ’, and
‘Ø’; parentheses ‘(’ and ‘)’; the quantifiers ‘@’ and ‘D’; and a collection of rules of
inference, i.e. rules that allow one to derive statements from previous statements.2

We shall also include function symbols, although this isn’t strictly necessary, since
a function is just a special type of relation.

We shall now cover some terminology and notation. A formula of (or in) a given
language is a finite string of symbols of the language. So, for example, if R is a

1By ‘arbitrarily large’, we mean that we can always add more variables. This can be done quite
easily: simply affix natural numbers or primes: x1, x2, x3, . . . or x1, x2, x3, . . . .

2A brief note for any computer scientists, recusrion theorests, or logicians reading this is called for:
these rules of inference should be recursive. For the uninitiated, this means that we could programme a
computer, say in C++, to check whether a given use of a rule is valid. This can be and is indeed done:
for example, the programme Fitch that accompanys [2] does precisely this.
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binary relation, S is a uninary relation, and x and y are variables of our given
language, then

Ñ y@RqSpDx (1)

and
@xpSpxq Ñ DyRpx, yqq (2)

are formulae of our language. Now, hopefully the reader’s intuition will have led
them to think that (1) doesn’t make any sense. This is indeed the case: the formula
is not well-formed, i.e. it does not follow the syntax. But how do we actually
define the syntax? Well, we first need to define terms and atomic formulae. A term
is anyone of the following: a constant symbol; a free variable; or fpx1, x2, . . . , xnq,
where f is an n-ary function symbol and the xi are constant symbols or free variables
(or a mixture of the two). A formula is called atomic iff it is of the form t1 � t2 or
Rpt1, t2, . . . , tnq, where R is an n-ary relation symbol and the ti are terms. We can
now define the syntax. We do this inductively: all atomic formulae are well-formed;
and if ϕ and ψ are well-formed, then so are

 ϕ, ϕ_ ψ, ϕ^ ψ, ϕÑ ψ, ϕØ ψ, Dxϕ, and @xϕ,

where x is any variable.3 So (2), for example, is well-formed; such a formula is
called a well-formed formula (or wff for short). Since non-well-formed formulae are
somewhat pointless to study, from now we shall on use the word ‘formula’ to mean
‘wff’, i.e. from now on, all of our formulae will be well-formed.

At this point we shall make a quick note about the order of quantifiers. The
order in which quantifiers are placed is very important. We illustrate this with the
definition of continuity of a function f : R Ñ R at c P R, which should be familiar
to the reader:

@ε ¡ 0 Dδ ¡ 0 |x� c|   δ Ñ |fpxq � fpcq|   ε.

If we were to switch the order of the quantifiers, the meaning would be quite differ-
ent:

Dδ ¡ 0@ε ¡ 0 |x� c|   δ Ñ |fpxq � fpcq|   ε.

The first defintion says that for a given ε ¡ 0 we can find a δ ¡ 0 such that the
property holds; that is, δ depends on ε. The second definition says that there is a
δ ¡ 0 such that the property holds for all ε ¡ 0; in particular, δ does not depend
on ε.

A variable in a formula that is in the range of a quantifier is said to be bound; a
variable that is not bound is said to be free. So, in the example below, x is bound
while y is free:

DxRpx, yq. (3)

A formula in which all variables are bound is called a sentence. So formula (2) is a
sentence, for example. If ϕpx1, x2, . . . , xnq is a formula with free variables precisely
x1, x2, . . . , xn and t1, t2, . . . , tn are terms in our language, then we write

ϕpc1, c2, . . . , cnq

to denote the formula with the free variables x1, x2, . . . , xn replaced by t1, t2, . . . , tn
(in that order). So, for example, if ϕpyq denotes formula (3) and c is a constant
symbol, then ϕpcq denotes the sentence

DxRpx, cq.

3The syntax of a formal language should also be recursive, although this is fairly clear from the way
it is defined.
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Unless otherwise specified, we write ϕpxq to denote a formula ϕ that has precisely
one free variable.

We make a brief note here about a common notation. Many authors write ϕrx{ās
to denote a formula ϕ with a free variable x and terms a1, a2, . . . , an for some n, the
latter being called parameters. They do this so they can talk about formulae more
flexibly, as they can vary the parameters of a given formula, rather than having to
talk about a new formula for each set of parameters. We, however, shall not adopt
this notation, since for the purposes of this essay such notation is unnecessary and,
moreover, the author believes that our notation is slightly clearer, especially to those
readers new to formal logic.

All our languages will be first-order, which means that quantifiers range, and
only range, over variables; they do not range over formulae. The significance of
this shall be explained later. The term first-order logic refers to the the framework
upon which first-order languages are built, i.e. the Booleon connectives, the identity
symbol =, the quantifiers @ and D, a set of variables, and a standard collection of
rules of inference, which we shall list shortly.

An axiom of a given language is a sentence that is taken to be true,4 i.e. the
axioms of a language are premises from which one can deduce statements using the
language’s rules of inference.

A theory in a language is a consistent set of sentences – by consistent we mean
that we cannot deduce a contradiction from them, a contradiction being a sentence
of the form ϕ^ ϕ. We shall usually define a theory by specifying a set of axioms,
the theory being all sentences that can be derived from the axioms.

We now need to actually state our rules of inderence. There are several equivalent
ways of presenting formal proofs in first-order logic, perhaps the three most notable
being the Fitch-style or system of natural deduction, as in [2], for example; the
proof-tree style, as in [3] and [11], for example; and the sequential calculus, as in [4],
for example. We shall adopt the last of these. The sequential calculus ivolves the
symbol ‘$’, which is read as ‘turnstile’, ‘proves’, or ‘yields’. For a set of sentences
Γ and a sentence ϕ in a given language, the expression

Γ $ ϕ

means that ϕ can be formally proved from Γ. It is with this notation that we shall
state our rules of inference, of which there are 19.5 They fall into four catgories:
structural, Boolean, quantifier, and identity.

Let Γ, ∆ be arbitrary sets of sentences; ϕ, ψ, θ be arbitrary sentences; c be an
arbitrary constant symbol; and s, t be arbitrary terms.

1. Structural rules:

(i) If ϕ P Γ, then Γ $ ϕ. (Assumption)

(ii) If Γ � ∆ and Γ $ ϕ, then ∆ $ ϕ. (Monotonicity)

(iii) If Γ $ ∆ and ∆ $ ϕ, then Γ $ ϕ. (Cut)

2. Boolean rules:

(i) If Γ $ ϕ^ ψ, then Γ $ ϕ. (^-Elimination)

4I really don’t want to get into a discussion about truth here, but an argument from an axiom A
should be thought of as ‘if A, then...’. Whether or not A is actually true (whatever that means) is beside
the point: our proofs are conditional.

5Perhaps we should call this the Hardcastle calculus!
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(ii) If Γ $ ϕ and Γ $ ψ, then Γ $ ϕ^ ψ. (^-Introduction)

(iii) If Γ $ ϕ_ ψ, ΓY tϕu $ θ, and ΓY tψu $ θ, then Γ $ θ. (_-Introduction)

(iv) If Γ $ ϕ, then Γ $ ϕ_ ψ. (_-Introduction)

(v) If Γ $   ϕ, then Γ $ ϕ. ( -Elimination)

(vi) If ΓY tϕu $ ψ ^ ψ, then Γ $  ϕ. ( -Introduction)
(This is often called proof by contradiction.)

(vii) If Γ $ ϕ and Γ $ ϕÑ ψ, then Γ $ ψ. (Ñ-Elimination)

(viii) If ΓY tϕu $ ψ, then Γ $ ϕÑ ψ. (Ñ-Introduction)

(ix) If Γ $ ϕØ ψ and Γ $ ϕ, then Γ $ ψ. (Ø-Elimination)

(x) If Γ $ ϕÑ ψ and Γ $ ψ Ñ ϕ, then Γ $ ϕØ ψ. (Ø-Introduction)

3. Quantifier rules:

(i) If Γ $ @xϕpxq, then Γ $ ϕpcq. (@-Elimantion)

(ii) If Γ $ ϕpcq and ϕpcq R Γ, then Γ $ @xϕpxq. (@-Introduction)

(iii) Γ $ Dxϕpxq, ΓY tϕpcqu $ ψ, and ϕpcq R Γ, then Γ $ ψ. (D-Elimination)

(iv) Γ $ ϕpcq, then Γ $ Dxϕpxq. (D-Introduction)

4. Identity rules:

(i) If Γ $ s � t and Γ $ ϕpsq, then Γ $ ϕptq. (�-Elimination)

(ii) Γ $ t � t. (�-Introduction)

Let us run through two examples of formal proofs, the first being fairly easy and
the second being a little trickier:

Proposition 2.1. Γ $ ϕ^ ψ iff Γ $ ψ ^ ϕ.

Proof.

1. Γ $ ϕ^ ψ (Premise)
2. Γ $ ϕ (^-Elimation: 1)
3. Γ $ ψ (^-Elimation: 1)
4. Γ $ ψ ^ ϕ (^-Introduction: 2,3)

We have the other direction by simply running this proof in reverse.

Proposition 2.2. Γ $ ϕ_ ψ iff Γ $  p ϕ^ ψq.

Proof.

1. Γ $ ϕ_ ψ (Premise)
2. ΓY t ϕ^ ψu Y tϕu $  ϕ^ ψ (Assumption)
3. ΓY t ϕ^ ψu Y tϕu $  ϕ (^-Elimination: 2)
4. ΓY t ϕ^ ψu Y tϕu $ ϕ (Assumption)
5. ΓY t ϕ^ ψu Y tϕu $ ϕ^ ϕ (^-Introduction: 3, 4)
6. ΓY tϕu $  p ϕ^ ψq ( -Introduction: 5)
7. ΓY t ϕ^ ψu Y tψu $  ϕ^ ψ (Assumption)
8. ΓY t ϕ^ ψu Y tψu $  ψ (^-Elimination: 7)
9. ΓY t ϕ^ ψu Y tψu $ ψ (Assumption)

10. ΓY t ϕ^ ψu Y tψu $ ψ ^ ψ (^-Introduction: 8, 9)
11. ΓY tψu $  p ϕ^ ψq ( -Introduction: 10)
12. Γ $  p ϕ^ ψq (_-Elimination: 1, 6, 11)
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1. Γ $  p ϕ^ ψq (Premise)
2. ΓY t pϕ_ ψqu Y tϕu $  pϕ_ ψq (Assumption)
3. ΓY t pϕ_ ψqu Y tϕu $ ϕ (Assumption)
4. ΓY t pϕ_ ψqu Y tϕu $ ϕ_ ψ (_-Introduction: 3)
5. ΓY t pϕ_ ψqu Y tϕu $ pϕ_ ψq ^  pϕ_ ψq (^-Introduction: 2, 4)
6. ΓY t pϕ_ ψqu $  ϕ ( -Introduction: 5)
7. ΓY t pϕ_ ψqu Y tψu $  pϕ_ ψq (Assumption)
8. ΓY t pϕ_ ψqu Y tψu $ ψ (Assumption)
9. ΓY t pϕ_ ψqu Y tψu $ ϕ_ ψ (_-Introduction: 8)

10. ΓY t pϕ_ ψqu Y tψu $ pϕ_ ψq ^  pϕ_ ψq (^-Introduction: 7, 9)
11. ΓY t pϕ_ ψqu $  ψ ( -Introduction: 10)
12. ΓY t pϕ_ ψqu $  ϕ^ ψ (^-Introduction: 6, 11)
13. ΓY t pϕ_ ψqu $  p ϕ^ ψq (Monotonicity: 1)
14. ΓY t pϕ_ ψqu $ p ϕ^ ψq ^  p ϕ^ ψq (^-Introduction: 12, 13)
15. Γ $   pϕ_ ψq ( -Introduction: 14)
16. Γ $ ϕ_ ψ ( -Elimination: 15)

Now, the reader may be worried at this point: ‘Surely we don’t have to construct
such detailed proofs everytime?’ Thankfully, we do not. The idea is that we present
proofs in such a way that it is clear that we could, if we really wanted to, write
them in a completely formal way as above, although of we never do of course.
Smith summed it up quite nicely:

Sufficient unto the day is the rigour thereof.6

Moreover, we shall discuss a result in the next subsection that further justifies such
informal proofs, the Soundess and Completeness Theorem of first-order logic.

The last point that we shall cover in this subsection is the word meta. We
use ‘meta’ to refer to something about a formal theory (or theories), rather than
something in a formal theory. So, for example, the Soundness and Completeness
Theorem that we shall briefly mention in the next subsection is a metatheorem,
since is it a theorem about formal theories, rather than a theorem in a formal
theory. Also, strictly speaking, Propositions 2.1 and 2.2 are metapropositions, since
we stated them in English; however, we can easily reformulate them as propositions
in the logic: Γ $ ϕ^ ψ Ø ψ ^ ϕ and Γ $ ϕ_ ψ Ø  p ϕ^ ψq.

2.2 Models

We will only discuss models informally and briefly, as they are not essential to this
essay, although some knowledge of them will aid understanding of some points later
on.

We first shall informally define an L-structure. An L-structure is a mathemtical
object in which we interpret the non-logical symbols of L, 7 i.e. we assign con-
stants, relations, and functions in the structure to each of the constant, relation,
and function symbols in L. A model of an L-theory T is then an L-structure in
which the axioms of T are true. We shall not properly define truth in a model, as it
a non-trivial task and fairly involved; the details can be found in any logic textbook,
for example [3] or [4]. Instead, we shall give some examples that will hopefully give
the reader an intuitive understanding of these concepts.

6p. 18 of [13].
7The reader should not confuse this with interpreting one theory in another, something that we will

be looking at extensively later on in this essay.
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Consider the language LG of group theory, where the non-logical symbols are ‘e’
and ‘�’. The theory of groups TG is then the theory in LG generated by the usual
group axioms. A model of TG is then simply a group, such as pZ{nZ,�nq or pR,�q.
In the first example we interpret e as 0 and � as addition modulo n. In the second
example we interpret e as 1 and � as multiplication in the reals; of course, we could
also make R into a model of TG by interpreting e as 0 and � as addition. Similarly,
we could make Z{nZ into a group by interpreting e as 1 and � as multiplication
modulo n.

Let us consider another example. Let LF be the language of fields, with non-
logical symbols ‘0’, ‘1’, ‘+’, and ‘�’. The theory TF of fields is then the LF -theory
generated by the usual field axioms. A model of TF would then be a field, such as
C with the natural interpretations of the symbols; or Z{pZ for some prime p with 0
and 1 interpreted as 0 and 1 respectively, and + and � interpreted as addition and
multiplication modulo p respectively.

We shall now breifly discuss the Soundness and Completeness Theorem of first-
order logic. The proof is quite involved and so we shall only state the theorem.8

The theorem states that syntactical reasoning, i.e. formal proofs, and semantic
reasoning, i.e deducing results inside models, are the same. More precisely, if we
write Γ ( ϕ to mean that every model of Γ is also a model of ϕ,9 then the Soundness
and Completeness Theorem says

Γ $ ϕ if and only if Γ ( ϕ.

As we mentioned at the end of the previous subsection, this theorem further justifies
informally reasoning, as it tells us that deducing statements semantically, i.e. by
resoning about truth inside an arbitrary model, is equivalent to deducing statements
syntactically, i.e. proving them formally. Another important consequence of this
theorem is that it justifies the use of counter examples, something that we use in
mathematics all the time. So, if we wish to prove that Γ & ϕ, i.e. that we cannot
deduce ϕ from Γ, then it suffices to find a model in which Γ is true but ϕ is false,
since Γ * ϕ implies Γ & ϕ (where Γ * ϕ means that there exists a model in which
Γ is true but ϕ is false).

As said previously, a proper understanding of models is not a prerequisite for
reading this essay, although it is helpful. However, model theory is both an interest-
ing and thriving area of research, especially here in the UK, and should the reader
wish to investigate the area for his- or herself, the author would recommend [9] as
a good place to start.

3 PA and ZF�inf

3.1 Peano arithmetic

Peano Arithmetic, or ‘PA’ for short, was developed by the Italian mathematician
Giuseppe Peano at the end of the 19th century. There are several ways to formulate
PA, all of which are equivalent; our choice of formulation is arbitrary, and is largely
based on that in [7]. PA is written in the first-order language of arithmetic, denoted
LA, which of consists of the usual Boolean connectives, quantifiers, and identity
symbol; two constant symbols, ‘0’ and ‘1’; two binary function symbols, ‘+’ and ‘�’;

8Proofs can be found in all good logic textbooks, such as [3] or [4].
9There can be some confusion here: ( is also used to indicate that sentence or set of sentences are

ture in given L-structure. So, for example, we might write pR,�q ( TG. The meaning of ( is usually
clear from the context.

8



and a binary relation, ‘ ’. We shall use infix notation for +, �, and  ; that is, we
shall write ‘x�y’, ‘x �y’ (or sometimes just ‘xy’), and ‘x   y’, rather than ‘�px, yq’,
‘�px, yq’, and ‘ px, yq’. Also, to avoid excessive paremtheses, we let � be dominant
over �. So, for example, w � x � y � z is short for pw � xq � py � zq. PA is then the
LA-theory based on the following 15 axioms and one axion schema:

(Ax1) @x@y@zppx� yq � z � x� py � zqq (associativity of +)
(Ax2) @x@ypx� y � y � xq (commutativity of +)
(Ax3) @x@y@zppx � yq � z � x � py � zqq (associativity of �)
(Ax4) @x@ypx � y � y � xq (commutativity of �)
(Ax5) @x@y@zpx � py � zq � x � y � x � zq (distributivity of � over +)
(Ax6) @xpx� 0 � x^ x � 0 � 0q (0 is the additive identity)
(Ax7) @xpx � 1 � xq (1 is the multiplicative identity)
(Ax8) @x@y@zppx   y ^ y   zq Ñ x   zq (transitivity of  )
(Ax9) @xp x   xq (  is a strict ordering)

(Ax10) @x@ypx   y _ y   x_ x � yq (  is a total (or linear) ordering)
(Ax11) @x@y@zpx   y Ñ x� z   x� zq (  is a invariant under addition by a constant)
(Ax12) @x@y@zp0   z ^ x   y Ñ x � z   y � zq (  is a invariant under non-zero multiplication)
(Ax13) @x@ypx   y Ñ Dzpx� z � yqq (subtraction)
(Ax14) 0   1^ @xpx ¡ 0 Ñ px ¡ 1_ x � 1q (  is a discrete ordering)
(Ax15) @xpx ¡ 0_ x � 0q (0 is the least element)

We now come to the axiom schema. Let ϕ be a LA-formula with precisely one free
variable. Then Iϕ is defined to be the sentence

pϕp0q ^ @xpϕpxq Ñ ϕpx� 1qq Ñ @yϕpyq.

The axiom schema of induction (or just induction for short) is then the collection
of all sentences Iϕ for every LA-formula ϕ with precisely one free variable. This
is an axiom schema because it is a collection of axioms; as we mentioned in the
previous subsection, in first-order logic quantifiers only range over variables, so we
cannot express the phrase ‘for all formulae ϕ’ in a first-order language. Thus PA is
not finitely axiomatised, although it is recursively axiomatised: we can programme
a computer to check whether a given application of induction is a valid one.

One might initially think that PA precisely describes the natural numbers. How-
ever, there are models of PA which are different10 to N (see [7]). Such models are
called nonstandard. We shall not cover them, but it worth the reader’s while to be
at least aware of their existence.11

We can already prove a useful result:

Lemma 3.1. The z in pAx13q is unique.

Proof. Suppose that we have z and z1 such that x � z � y and x � z1 � y. Then
x�z � x�z1. Suppose that  z � z1. Then, by (Ax9) and (Ax10), z   z1 or z1   z.
Without loss of generality, assume that z   z1. Then, by (Ax11), x � z   x � z1,
which is a contradiction by (Ax9), since x� z � x� z1.

With this lemma in mind, we can rewrite (Ax13) as

@x@ypx   y Ñ D!zpx� z � yqq,

10The technical word is nonisomorphic.
11For those more familiar with logic: Such models are a consequence of the Incompleteness Theorem;

they can also be constructed using the Compactness Theorem.
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where D!xRpxq is an abbreviation for the formula

DxpRpxq ^ @ypRpyq Ñ x � yqq.

Now is a good point to make a couple of remarks. Firstly, one might reasonably
ask why we didn’t just specify that the z in (Ax13) be unique in the first place.
Well, logically speaking – and we mean this in the meta sense, not the formal
one – it is better to make one’s axioms as minimal as possible, since this makes
the theory generated by the axioms less likely to be contradictory and, from a
pragmatic point of view, easier to deal with.12 Secondly, we should note that we
don’t include abbreviations as part of the language, also for this last reason. ‘D!’,
despite it’s appearance, is not a first-order symbol; it is simply a useful shorthand
which is used on the understanding that, if we really wanted to, we could do without
it. We will be using many such abbreviations in this essay and so it is worth the
reader’s while to try to understand this point. Let us introduce some more now:
‘x ¤ y’ is abbreviation for x   y _ x � y; ‘x � y’ is an abbreviation for  x � y;
and ‘Dx   y Rpxq’ and ‘@x   y Rpxq’ are abbreviations for Dxpx   y ^ Rpxqq and
@xpx   y Ñ Rpxqq respectively (and similarly for ¤).

We will now develop some theoretical machinery in PA that will be invaluable
to us later when we deal with interpretations. In particular, we will define functions
in PA that are defined recusively, most importantly exponentiation. To do this, we
will have to construct recursion in PA. The way to do this is to work through some
of the theory that the great mathematician and logician Kurt Gödel developed to
prove his famous (and most beautiful) 1931 Incompleteness Theorems.13 We shall
only give a sketch of how one would proceed through such theory, as the proofs
involved are very technical and take a lot of time to go through; the reader can find
the relevant details in [7].

We start by defining a simple function, the cut-off substraction of y from x,
which is denoted x � y. Informally, x � y is the larger of x � y and 0; formally,
x� y � z is an abbreviation for the formula

py ¤ x^ x� z � yq _ px   y ^ z � 0q. (4)

This abbreviation is justified by Lemma 3.1: z is uniquely determined by x and
y. Moreover, this function is total, i.e. it is defined for all x and y (this is also a
consequence of Lemma 3.1). This brings us to a key point: the formula (4) is in
fact the graph of x� y. More generally:

Definition 3.2. The graph of a function f is the formula ϕpx1, x2, . . . , xn, zq (where
n is the arity of f) such that

fpx1, x2, . . . , xn, q � z Ø ϕpx1, x2, . . . , xn, zq.

Now, � isn’t actually a function symbol in LA and so one might point out that its
graph isn’t actually defined. However, the following definition and theorem justify
its use as a function (and hence the existence of its graph):

Definition 3.3. Let T be a theory in a first-order language L. A theory T � in a
language L� is an extension of T iff L � L� and all the axioms of T are also axioms
of T �. T � is a conservative extension of T iff for every L-sentence ϕ, if T � $ ϕ then
T $ ϕ.

12As we will see later, when we start dealing with interpretations between theories, that having as few
axioms as possible makes life a lot easier, since it means that there is less to prove.

13The author highly recommends [13] should the reader wish to learn these theorems, which the
author thinks he/she really should, just like everyone at some point in their life should watch a play by
Shakespeare, hear a symphony by Mozart, or see a portrait by Raphael.
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Theorem 3.4. Let T be theory in a first-order language L. Suppose that an L-
formula ψ with n�1 free variables is such that T $ @x1@x2 . . .@xnD!zψpx1, x2, . . . , xn, zq.
If we define L� to be the language L with a new n-ary function symbol f and T � to
be the L�-theory T with the extra axiom

@x1@x2 . . .@xn@zpfpx1, x2, . . . , xnq � z Ø ψpx1, x2, . . . , xn, zqq,

then T � is a conservative extension of T .

Proof. We shall not prove this theorem in this essay due to its length and required
background theory. Instead, the reader is referred to [3].

This theorem means that we can add � to PA as a function symbol without fear
of changing PA’s strength. We could of course stick to using (4) as an abbreviation,
but adding � as a function makes life a lot easier, since it means we can talk about
terms defined from applications of �, rather than having to stick to using the graph
of �. Both methods are equivalent, in the sense that any theorems produced using
the former could be reformulated in terms of the latter, but the former really will
save a lot of unnecessary labour, especially when it comes to composing � with
other functions.

We shall be employing this technique a lot, not just in PA but also to finite
set theory later in the essay: whenever we come across a formula of the form of ψ
in Theorem 3.4, we shall introduce a function symbol that defines the function in
question.

We now move onto slightly harder functions, which are based on the following
lemma:

Lemma 3.5 (Euclidean division in PA). @x@yp0   xÑ D!rD!qpy � qx�r^r   xqq.

Proof. We shall first prove existence by induction on y. If y � 0 then q � 0 and
r � 0 fit the bill. Now let y ¡ 0 and suppose we have qx � r � y and r   x for
some r and q. Then y� 1 � qx� pr� 1q. r   x and so r� 1 ¤ x by Lemma below.
If r ¤ x then we are done. If r � x, then y � 1 � qx� x � pq � 1qx� 0 by (Ax5),
(Ax6), and (Ax7) and so we are done because 0   x. Thus existence is proved by
induction.

We now prove uniqueness. Suppose y � qx � r and y � q1x � r1 for some q, q1

and r, r1   x. Then qx � r � q1x � r1. Suppose  q � q1. Then, by (Ax10), q   q1

or q1   q; assumme without loss of generality that q   q1. Then qx   q1x by
(Ax12). Thus qx� r   q1x� r by (Ax11) and so y   y, a contradiction by (Ax9).
Thus q � q1. Suppose  r � r1. Without loss of generality assume r   r1. Then
qx � r   qx � r1 by (Ax11) and so y   y, a contradiction by (Ax9). Thus r � r1

and we are done.

With this lemma in hand we can define the quotient and remainder functions:

Definition 3.6. For x ¡ 0, we define the graph of Q to be

Qpy{xq � q Ø Drpy � qx� r ^ r   xq

and the graph of R to be

Rpy{xq � r Ø Dqpy � qx� r ^ r   xq.

As we did with �, we add Q and R as function symbols.
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We adopt Kaye’s notation because it makes it clear which number is dividing which:
Qpy{xq is far less likely to cause confusion than Qpy, xq (and similarly for R). With
the exception of x � 0,14 both Q and R are total.

We shall now sketch how one develops recursion in PA. Firstly, let us consider
how we use recursion in everyday mathematics: we define a sequence of numbers
by specifying how it starts and then giving a rule for how to get the next number
in the sequence from the previous number(s). So, to develop recursion in PA, it is
enough to work out how to encode a finite sequence of numbers as a single number in
such a way that we can recover any element of the sequence from this number and,
crucially, extend the sequence indefinitely. But how do we encode such sequences in
PA? Well, let us work out how we might do it in N; the method for PA is the same,
except that various points need to be proved quite carefully and functions need to
be defined properly (we have in fact done some of the latter). As we said earlier,
the precise details can be found in [7].

Consider a finite sequence of numbers x0, x1, . . . , xn�1. Let m � b!, where b �
maxpn, x0, x1, . . . , xn�1q. Then the sequence of numbers

m� 1, 2m� 1, 3m� 1, . . . , nm� 1

is pairwise coprime: Suppose that u | im� 1 and u | jm� 1 for some 0   i   j ¤ n,
1 ¤ u.15 Then u | pjm � 1q � pim � 1q � pj � iqm. But 0   j � i, n ¤ b and so
j � i | m. Now, either u | m or u | j � i (or both). If u | j � i, then u | m because
j�i | m. Thus in both case we have u | m, and so u | im. Thus u | pim�1q�im � 1
and so u � 1. Now recall the Chinese Remainder Theorem:16

Theorem 3.7. Let R be a Euclidean domain and let n1, n2, . . . , nk be non-zero
coprime elements of R. Then for any a1, a2, . . . , ak there exists x P R such that

x � a1 pmod n1q

x � a2 pmod n2q

...
x � ak pmod nkq.

We can apply this theorem to obtain a P N such that

a � xi pmod ppi� iqm� 1qq

for all i   n. Then the pair pa,mq encodes the sequence x0, x1, . . . , xn�1, since we
can obtain any xi from pa,mq:

xi � R

�
a

mpi� 1q � 1



.

We can then encode the pair pa,mq as a single number by setting

xa,my �
pa�mqpa�m� 1q

2
�m.

This does indeed encode the pair because x.. , ..y : N2 Ñ N is a bijection.
Using this machinery, we can define recursive functions, specifically exponention,

2x, and summation,
°

y¤x y, both of which will be invaluable to us later.

14We can’t divide by zero!
15x | y has its usual meaning of x divides y.
16This should be familiar to all Warwick mathematics students from MA249 Algebra II.
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3.2 ZF�inf

We shall now develop the first-order theory of Zermelo–Fraenkel set theory minus
infinity (‘ZF�inf’ for short). ZF�inf is written in the first-order language of sets, LP,
whose only non-logical symbol is P, which is binary relation known as membership.
When we talk about ZF�inf informally, the phrase ‘x is a set’ simply means ‘Dx’; in
ZF�inf, everything is a set. There are so-called class–set theories out there, perhaps
most notably the Bernays–Gödel theory of sets (BG),17 which have two kinds of
objects, sets and classes, but we shall be working soley in a set-only set theory. For
us, classes will simply be abbreviations; that is, for a class C � tx : ϕpxqu, writing
z P C will simply be shorthand for ϕpzq. Note that every set is a class: if x is a set,
then x � ty : y P xu. A class that is not a set is called a proper class.

We will now list the axioms of ZF�inf. We write them informally, i.e. in words,
and then write them in LP. We shall interspace the axioms with some remarks and
some theory. Our formulation is based on that in [6], although it does differ slightly.

Axiom of Extensionality. If x and y have the same elements, then x � y.
Formally:

@x@yp@zpz P xØ z P yq Ñ x � yq.

Not that the converse of this statement, i.e. if x � y then x and y have the same
elements, is a consequence of the �-Elimination rule.

Axiom of the Empty Set. There exists a set with no elements. Formally:

Dx@zp z P xq.

The use of the definite article in the name of this axiom is justified: this empty set is
unique by Extensionality. We shall use the abbreviationH as shorthand for this set.

Axiom of Pairing. For all x and y, there exists a set tx, yu that precisely contains,
x and y. Formally:

@x@yDz@wpw P z Ø pw � x_ w � yqq.

The reader is no doubt familiar with the ‘curly brackets’ or ‘braces’ notation t. . .u;
indeed, we have already used it to talk about classes. The symbols ‘t’, ‘u’ are not
part of the the language LP, although they are very useful as abbreviations. In some
instances we can add them to the language without having to worry: for example,
just as we used Theorem 3.4 in the previous subsection to add � to PA, we can
add t.. , ..u as a binary function symbol to LP, its existence justified by Pairing and
its functionality justified by Extensionality. We can do the same for the empty set,
introducing H as a 0-place function symbol.

Axiom Schema of Separation. If ϕ is a formula with precisely one free variable,
then for any x the class y � tz P x : ϕpxqu exists. Formally:

@xDy@zpz P y Ø pz P x^ ϕpzqqq.

This is an axiom schema for the same reason induction is a schema: we can’t
quantify over formulae. An interesting aside is that this axiom schema resolves
Russell’s Paradox; well, it shifts the blame to the universal class, V :� tx : x � xu:

17See p. 70 of [6] for the axioms of BG
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if V were a set, we could apply Separation to it with the formula  x P x and then
run through the usual argument. Thus, in ZF�inf, V is not a set. Historically,
Russell’s Paradox was one of the motivations behind axiomatising set theory, since
in näıve set theory we have unrestricted construction of sets. Separation is much
weaker: it allows unrestricted construction of subsets, but not of sets in their own
right.

Separation also allows us to take intersections over classes: For any nonempty
class C, the class £

C :� tz : z P x for every x P Cu

is a set, since we can apply Separation to any set in the class.

Axiom of Union. For any x there exists y �
�
x, the set of all elements of

members of x. Formally:

@xDy@zpz P y Ø pDwpw P x^ z P wqqq.

As we did with t.. , ..u, we introduce
�

as a function symbol. We also introduce the
binary function symbol Y, defined by

xY y �
¤
tx, yu.

Axiom of Power Set. For every x there exists y � Ppxq, the set of all subsets of
x. Formally:

@xDy@zpz P y Ø p@wpw P z Ñ w P xqqq.

We introduce Ppxq as a function symbol. We shall also introduce the abbreviation
x � y for the formula

@zpz P xÑ z P yq.

Thus we can restate the Aiom of Power Set informally as ‘for all x, the set Ppxq �
ty : y � xu exists’.

We now come to the negation of the Axiom of Infinity. The Axiom of Infinity states
that there exists an inductive set; that is, a set S such that H P S and x P S implies
xY txu P S. Before we state the axiom, we had better check that xY txu actually
exists. Consider the power set of x. txu P Ppxq and so by applying Separation to
Ppxq with the formula

Dy@zpz P y Ø z � xq,

we have that txu is a set. We then have that xY txu by the Axioms of Pairing and
Union. We can now state the axiom:

The Negation of the Axiom of Infinity. There does not exist an iductive set.
Formally:

 DxpH P x^ @zpz P xÑ z Y tzu P xqq.

Notice that in the above formula we have used some of the function symbols that
we introduced over during this subsection. As a reality check, let us explicitly show
that they aren’t strictly necessasy. We can write the negation of the Axiom of
Infinity purely in LP:

 DxpDypy P x^@wp w P yqq^@zpz P xÑ Dupu P x^@vpv P uØ pv P z_v � zqqqqq,

Hopefully the almost impenetrable nature of this statemtn will convince the reader
of the merits of introducing function symbols.
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Before we introduce the next axiom, we need to develop some terminology. A
formula F with precisely two free variables is said to be functional if it has the
following property:

@x@y@zppF px, yq ^ F px, zqq Ñ y � zq.

The word ‘functional’ has been chosen for obvious reasons. We shall talk about
functions in ZF�inf in more detail later, but for the time being we adopt the nota-
tion y � F pxq for the formula F px, yq.

Axiom Schema of Replacement. If F is a functional formula, then for every x
the set y � tF pwq : w P xu exists. Formally:

@xDypz P y Ø pDwpw P x^ F pw, zqqqq.

Perhaps the best way to think of this axiom schema is ‘the image of a set under a
function is a set’.

We now come to the last axiom:

Axiom of Foundation.18 Every nonempty set has an P-minimal element. For-
mally:

@xp x � HÑ Dypy P x^ y X x � Hqq.

We shall now run through some theory, which is based on that found in Chapters
1 and 2 of [6]. Firstly, let us define ordered pairs in ZF�inf. There are several ways
of doing this, but the following is the most popular:

Definition 3.8. px, yq is an abbreviation for the term ttxu, tx, yuu.

This does indeed define an ordered pair:

Lemma 3.9. ZF�inf $ pw, xq � py, zq Ø pw � y ^ x � zq.

Proof. pw � y^x � zq Ñ pw, xq � py, zq is simply a consequence of ^-Elimination.
For the converse, suppose that

ttwu, tw, xuu � ttyu, ty, zuu. (5)

First assume that y � z. Then ttyu, ty, zuu � ttyu, tyuu � ttyuu. Thus ttwu, tw, xuu �
ttyuu. Since the two sets are equal, they must have the same elements and thus
twu � tw, xu � tyu , and so w � x � y � z and the lemma holds.

Now asume that y � z. Suppose that twu � ty, zu. The two sets are equal and
so must have the same elements, so w � y � z, a contradiction. So twu � ty, zu.
Thus, by 5, we must have twu � tyu and so w � y. Then, again by 5, we must
have tw, xu � ty, zu. But w � y and so tw, xu � tw, zu and thus x � z and we are
done.

Now that we have ordered pairs, we can talk about ordered n-tuples by setting

px1, x2, . . . , xnq � ppx1, x2, . . . , xn�1q, xnq.

This now allows us to construct relations in ZF�inf:

Definition 3.10. An n-ary relation is a class of ordered n-tuples.

18This is also known as the Axiom of Regularity.
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We can view a relation symbol as a relation by considering all n-tuples that satisfy
the relation symbol. In ZF�inf there is only one relation symbol, P, which we can
view as a relation by considering the (proper) class of ordered pairs

tpx, yq : x P yu.

We are now able to talk properly about functions in ZF�inf. So far, we have
introduced function symbols (as justified by Theorem 3.4) and seen functional for-
mulae. In general, a function f is a binary relation such that px, yq P f and px, zq P f
imply y � z. (Notice that we can talk about n-ary functions by letting x be an or-
dered n-tuple.) So a functional formula F can be viewed as function by considering
the class of ordered pairs

tpx, yq : F px, yqu.

Similarly, we can view function symbols as functions. So, for example, we can view
P as a function by considering the (proper) class of ordered pairs

tpx, yq : Ppxq � yu.

We now introduce some terminology and notation. The domain of a function f ,
denoted dompfq, is the class

dompfq � tx : Dy px, yq P fu.

A function whose domain is a proper class is often called a class function. Notice
that, by Replacement, if dompfq is a set then f is a set. The range of f , denoted
ranpfq, is the class

ranpfq � ty : Dxpx, yq P fu.

We write f : x Ñ y if f � x and ranpfq � y. Surjective and injective have their
usual definitions. The restriction of f to z � dompfq, denoted fæx, is the function

fæz � tpx, yq P f : x P zu.

We shall shorlty introduce a type of object that will be crucial later on in this
essay: ordinals. But first we need some preliminary definitions:

Definition 3.11. A set x is transitive if every member of x is a subset of x, that is

@zpz P xÑ z � xq.

At first one might wonder whether such sets exist. Well, quite simple examples
exist. We will develop this properly later, but in ZF�inf we can build up the natural
numbers as follows:

0 � H, 1 � t0u, 2 � t0, 1u, . . . , n � t0, 1, 2, . . . , n� 1u, . . . .

These are known as the von Neumann ordinals. It is fairly easy to see that all of
these sets are transitive, although we will need to develop some more theory to see
this rigorously.

Definition 3.12. Let x be a set. A binary relation R is strict partial ordering on
(or of) x iff

(i)  Rpz, zq for every z P x (the ordering is strict); and
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(ii) for all u, v, w P x, if Rpu, vq and Rpv, wq, then Rpu,wq (R is transitive19).

If, in additon we have

(iii) for every y, z P x we have Rpx, yq, Rpy, xq or x � y,

then R is said to be a linear (or total) ordering on x.

We shall usually denote orderings by  , using infix notation. We use the abbrevia-
tion ‘x ¤ y’ as shorthand for x   y _ x � y.

Definition 3.13. Let x be a set linearly ordered by  . Let y be a nonempty subset
of x. An element a P x is:

(i) a greatest element of y iff a P y and @zpz P xÑ z ¤ aq;

(ii) a least element of y iff a P y and @zpz P xÑ a ¤ zq;

(iii) an upper bound of y iff @zpz P xÑ z ¤ aq;

(iv) a lower bound of y iff @zpz P xÑ a ¤ zq;

(v) the supremum of y iff a is the least upper bound of y, in which case a is de-
noted ‘sup y’; and

(vi) the infimum of y iff a is the greatest lower bound of y, in which case a is
denoted ‘inf y’.

Definition 3.14. Let R be an linear ordering on a set x. R is said to be a well-
ordering iff every subset of x has an R-minimal element, i.e.

@ypy � xÑ Dwp Dzpz P y ^Rpz, wqqqq.

We can now define what an ordinal is:

Definition 3.15. An ordinal is a transitive set that is well-ordered by P.

We shall often denote P by   when talking about ordinals. We denote the class
of all ordinals by ‘Ord’. Let us prove some elementary results:

Lemma 3.16.

(i) 0 � H is an ordinal.

(ii) If α is an ordinal and β P α, then β is an ordinal.

(iii) If α � β are ordinals and a � β, then α P β.

(iv) If α, β are ordinals, then either α � β or β � α.

19The reader should not confuse this with the meaning of ‘transitive’ in Definition 3.11. It is perhaps
an unfortunate consequence of the historical developement of this area that the same word has been come
to mean two different but yet closely related things. The proof of Lemma 3.16(ii) sheds some light on
why the word has developed in this way.
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Proof. (i) This is immediate from the definition of an ordinal.
(ii) We need to show that β is transitive and well-ordered by P. Since α is an

ordinal, it is transitive and thus β � α. Thus β inherits the well-ordering of α. All
that is left is to show that β is transitive. Consider some γ P β. We to show that
γ � β, i.e. δ P γ Ñ δ P β. β � α and so γ P α. Thus, since α is transitive, γ � α.
Thus δ P α. So δ, γ, β P α, δ P γ, and γβ. Thus δ P β because P is a transitive
relation on α. Thus γ � β and we are done.

(iii) Let γ be the least element of β � α, where β � α � tx P β : x R αu (which
exists by applying Separation to β); we can take the least element because ordinals
are well-ordered by P. Consider some δ P γ. Then δ P β because γ � β. Thus δ P α
because γ is the least element of β � α. Thus tξ P β : ξ P γu � α. Now consider
some σ P α. Then σ P β because α � β and so σ P γ because γ is the least element
of β � α. Thus tξ P β : ξ P γu � α and so tξ P β : ξ P γu � α. Now, clearly
tξ P β : ξ P γu � γ. But what about the converse? Well, suppose we have z P γ
such that z R tξ P β : ξ P γu. Then, since z P γ, we must have z R β. But this is a
contradiction, since γ � β. So tξ P β : ξ P γu � γ and thus α � γ P β.

(iv) By (ii) and (iii), αX β is an ordinal. Let γ � αX β. Then γ � α or γ � β,
for otherwise we have γ P α and γ P β by (iii), and so γ P γ, which contradicts P
being a strict ordering.

Now, ZF�inf is often called ‘finite set theory’, and so this would suggest that
everything in ZF�inf is finite. This is indeed the case, but we shall need to prove
this. To do this, we shall run through a series of lemmas and defintions which lead
us to this result. The working is quite subtle, and it will require us at times to
actually consider an inductive set; this does of course contradict  inf, but we need
to consider such a set in order to properly understand infinity in ZF�inf (or rather
its lack thereof).

By Lemma 3.16, we have the following results:

(i) P is a linear ordering of Ord.20

(ii) For every ordinal α, α � tβ : β P αu.

(iii) If C is a nonempty class of ordinals, then
�
C is an ordinal,

�
C P C and�

C � inf C. Thus, by (i), P is a well-ordering of Ord; that is, every nonempty
subclass C of Ord has a least element, namely

�
C.

(iv) If X is a nonempty set of ordinals, then
�
X is an ordinal and

�
� supX.

(v) For every ordinal α, αY tαu is an ordinal. We define α� 1 to be αY tαu.

(vi) Ord is a proper class (otherwise consider suppOrd� 1q).

In light of these results, we can make some definitions:

Definition 3.17. An ordinal α of the form α � β � 1 is called a successor ordinal.
If α is not a successor ordinal, then α � suptβ : β P αu �

�
α and we call α a limit

ordinal. We also consider H to be a limit ordinal, defining supH � H.

We can now prove transfinite induction, or just induction for short:

20Definition 3.12 can easily be adapted for classes.
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Theorem 3.18 (Transfinite induction). Let C be a class of ordinals such that

(i) H P C;

(ii) if α P C then α� 1 P C;

(iii) if α is a nonzero limit ordinal and β P C for all β P α, then α P C.

Then C � Ord.

Proof. Suppose that the theorem is false. Then, since P is a well-ordering of Ord,
we can consider the least ordinal γ R C. By (i) we have that γ � H. Suppose that
γ � β � 1 for some β. Since γ is the least ordinal not in C, β P C. But then by (ii)
we have acontradiction. Thus γ must be a limit ordinal. But since γ is the least
ordinal not in C, β P C for every β P γ, and so we have a contradiction by (iii).
Thus no such γ can exist.

As we said earlier, we wish to understand infinity in ZF�inf. To do this, we
shall show that there are no limit ordinals in ZF�inf. But to do this, we need to
consider inductive sets. We define

N �
£
tX : X is inductiveu.

Clearly such a set does not exist in ZF�inf, but we can consider it in ZF, where we
include inf (rather than its negation). We shall now work through a series of lemmas
(based on the exercises at the end of Chapter 1 of [6]) twhich show that N behaves
like the natural numbers. Let us introduce the following notation: For n P N , let
n � 1 � n Y tnu, and define   on N by n   m iff n P m. We also reintroduce the
notation

0 � H, 1 � t0u, 2 � t0, 1u, . . . , n � t0, 1, 2, . . . , n� 1u, . . .

from earlier; these lemmas will lead us to a result that shows that the von Neumann
ordinals are in fact all the ordinals in ZF�inf.

Lemma 3.19. If X is inductive, then the set tx P X : x � Xu is also inductive.
Hence N is transitive and for each n P N , n � tm P N : m   nu.

Proof. Let X 1 � tx P X : x � Xu. Clearly H P X 1 (since X is inductive). Consider
some x P X 1. Since X is inductive, xY txu P X. We have x � X by the definition
of X and txu � X because a P X. Thus x Y txu � X and so x Y txu P X 1 and so
X 1 is inductive.

By definition the definition of N , N 1 � N . Since N is inductive, N 1 is inductive.
Thus, by the definition of N , N � N 1. Thus N � N 1 and so N is transitive.

Let n P N . Then n � N because N is transitive. Consider some m P n; by
definition we have m   n. So n � tm P N : m   nu.

Lemma 3.20. If X is inductive, then the set tx P X : x is transitiveu is inductive.
Hence every n P N is transitive.

Proof. Let X 1 � tx P X : x is transitiveu. Clearly H P X 1. Consider some x P X 1.
Since X is inductive xY txu P X. Consider some z P xY txu. If z P x, then, since
x is transitive, z � x and so z � xYtxu. If z P txu, then z � x and so z � xYtxu.
Thus xY txu is transitive and so xY txu P X 1. Therefore X 1 is inductive

Clearly N 1 � N . Since N is inductive, N 1 is inductive. Thus N 1 � N and so
N 1 � N . Thus every n P N is transitive.
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Lemma 3.21. If X is inductive, then the set tx P X : x is transitive and x R xu is
inductive. Hence n R n and n � n� 1 for every n P N .

Proof. Let X 1 � tx P X : x is transitive and x R xu. Clearly H P X 1. Consider
some x P X 1. Since X is inductive, x Y txu P X. By the Lemma 3.20 above, to
show that X 1 is inductive it suffices to show that x Y txu R x Y txu. Suppose that
xYtxu P xYtxu. If xYtxu P x, then since x is transitive, xYtxu � x. Thus, since
x P xYtxu, we have x P x, which is a contradiction because x P X 1. If xYtxu P txu,
then xY txu � txu (since txu has precisely one element). So txu � x and so x P x,
which is again a contradiction. Therefore xY txu R xY txu and so X 1 is inductive.

Clearly N � N 1 (the same reasoning as the last to proofs applies). Thus n R n
for evey n P N . Suppose n � n� 1 for some n P N . So n � nYtnu and so tnu � n.
Thus n P n, a contradiction. Thus n � n� 1 for every n P N .

Lemma 3.22. If X is inductive, then tx P X : x is transitive and every nonempty z �
x has an P -minimal elementu is inductive. (t is ‘ P-minimal’ in z iff there does not
exist s P z such that s P t.)

Proof. Let X 1 � tx P X : x is transitive and every nonempty z � x has an P
-minimal elementu. Clearly H P X 1. Consider some x P X 1. By Lemma 3.20 we
have that x Y txu is transitive. x R x: Suppose x P x and consider the nonempty
subset txu � x; this has no P-minimal element, a contradiction. Consider some
nonempty z � xY txu. Let z1 � z X x. If z � z1, then z has an P-minimal element
(since z � x). Now suppose that z � z1 X txu. Let t be an P-minimal element of
x. Since x is transitive, t � x. Thus, if y P t, then y P y, which is a contradiction,
since y R y. So y R t. Therefore t is an P-minimal element of z. Thus xY txu P X 1

and so X 1 is inductive.

Lemma 3.23. Every nonempty X � N has an P-minimal element.

Proof. Consider some n P X. Suppose that XXn � H. Then m P X implies m R n
and so n is an P-minimal element of X. Now suppose that X X n � H. By Lemma
3.22, X X n has and P-minimal element, u say. Consider some a P X such thatr
a P u. By Lemma 3.20, n is transitive and so u � n. Thus a P n. Hence a P X X n,
which contradicts u being an P-minimal element of X X n. Therefore no such a
exists and so u is an P-minimal element of X.

Lemma 3.24. If X is inductive then so is tx P X : x � H or x � yYtyu for some y P
Xu. Hence every nonzero n P N is of the form n � m� 1 for some m P N .

Proof. Let X 1tx P X : x � H or x � y Y tyu for some yu. Clearly H P X 1.
Consider some x P X 1. Then x Y txu P X 1 by the definition of X 1. Thus X 1 is
inductive. Thus N � N 1 and we are done.

With all these lemmas behind us, we can prove induction for N , which we shall
need later:

Theorem 3.25 (N -induction). Let A � N such that 0 P A and if n P A then
n� 1 P A. Then A � N .

Proof. Suppose that N � A � H. Then, by Lemma 3.23, N � A has a P-minimal
element, u say. By Lemma 3.24, u � n � 1 for some n P N . Since n   u,
n R N �A (because u is an P-minimal element of N �A). Thus, by the hypothesis,
u � n� 1 P A, which is a contradiction. Thus N �A � H, i.e. A � N .
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We are now nearly ready to show that there are no nonzero limit ordinals in
ZF�inf. Firstly, notice that if there is a nonzero limit ordinal, then there must be
a least nonzero limit ordinal, since P is well-ordering of Ord. Denote the least limit
ordinal, if it exists, by ω. We need another couple of lemmas:

Lemma 3.26. α is a limit ordinal if and only if for every β, β   α implies β�1   α.

Proof. The lemma holds vacuously for α � 0, so assume that α � 0. Let β   α.
Since α is a limit ordinal, α � β � 1. Since   is a linear ordering of Ord, either
α   β � 1 or β � 1   α. If α   β � 1, i.e. α P β Y tβu, then α � β because α R β.
This is a contradiction. Therefore β � 1   α.

Now suppose that α is an ordinal such that β   αÑ β � 1   α holds for every
β. Then α cannot be a successor ordinal and thus must be a limit ordinal.

Lemma 3.27. If a set X is inductive, then X XOrd is inductive. The set N , if it
exists, is the least nonzero limit ordinal.

Proof. Clearly H P X XOrd. Let α P X XOrd. Since X is inductive, αY tαu P X.
Since α is an ordinal, αYtαu is an ordinal. Thus αYtαu P XXOrd and so XXOrd
is inductive.

We have that NXOrd is inductive by our previous work. Thus, by the definition
of N , N � N X Ord. Since N � Ord,   is a linear ordering of N ; by Lemma 3.23
it is in fact a well-ordering. By Lemma 3.19 we have that N is transitive. Thus N
is itself an ordinal.

Since N is inductive, the implication α   N Ñ α � 1   N holds for every α.
Thus, by Lemma 3.26, N is a limit ordinal. Clearly N � 0.

Suppose that there exists a nonzero limit ordinal M such that M ¤ N . Then
0 PM and the implication α  M Ñ α� 1  M holds for every α by Lemma 3.26.
Thus M is inductive and so N � M . But M P N and so M � N because N is
transitive. Thus M � N .

Definition 3.28. An ordinal n is a finite ordinal iff it is not greater than nor equal
to any nonzero limit ordinal.21 A set A is finite iff there exists a bijection A Ñ n
for some finite ordinal n. A set is infinite iff it is not finite.

Theorem 3.29. The following are equivalent:

(i) There exists an inductive set.

(ii) There exists an infinite set.

(iii) ω is a set.

Proof. [(i) Ñ (ii)] Assume there exists an inductive set.

N is a set because the class tX : X is inductiveu is nonempty. Thus, by Exercise
2.3 in Jech, N � ω. We shall now prove that ω is infinite and hence that (ii) holds.
To do this we will use N -induction (Theorem 3.25). Clearly there does not exist
a bijection ω Ñ 0. For the induction hypothesis, assume that there does not exist
a bijection ω Ñ k. To prove the case for k � 1, we shall suppose the negation
and derive a contradiction. So suppose that f : ω Ñ k � 1 is a bijection. Since
f is a bijection, there exists a unique l P ω such that fplq � k � 1. By Lemma
3.24, either l � m � 1 for some m P ω or l � 0. First suppose l � m � 1. Using
the Power Set Axiom and the Separation Axiom Schema,22 define a new function

21So n   ω if ω is a set.
22We shall abbreviate ‘the Power Set Axiom and the Separation Axiom Schema’ to ‘PS & S’.
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f 1 : ω Ñ k�1�tfp0qu by f 1pnq � fpn�1q. f 1 is a bijection because f is a bijection.
Again using PS & S, define another new function f2 : ω Ñ k by

f2pnq �

"
f 1pnq if n � m,
fp0q if n � m.

(Informally: We replace f 1pmq � k � 1 by fp0q.) f2 is a bijection because f 1 is
a bijection. This contradicts the induction hypothesis. Now suppose l � 0, i.e.
fp0q � k� 1. We will carry out the same procedure as before but with a few minor
changes. Using PS & S, define a new function g : ω Ñ k � 1� tfp1qu by

gpnq �

"
fp0q if n � 0,

fpn� 1q if n ¥ 1.

g is a bijection because f is a bijection. Again using PS & S, we define another new
function g1 : ω Ñ k by

g1pnq �

"
fp1q if n � 0,
gpnq if n ¡ 0.

g1 is a bijection because g is a bijection. This contradicts the induction hypothesis.
Since both cases (l � m � 1 for some m P ω and l � 0) lead to contradiction,
our suppostion must be false and thus there does not exist a bijection ω Ñ k � 1.
Therefore, by induction, there does not exist a bijection ω Ñ n for any n P ω. Hence
ω is infinite.

[(ii) Ñ (iii)] Assume there exists an infinite set.

To prove this implication, we shall suppose that ω is not a set and derive a
contradiction. We shall start with some preliminary results, the first of which is not
strictly necessay to prove the implication but is nevertheless interesting:

Proposition 3.30. If ω does not exist, then there does not exist a nonzero limit
ordinal.23

Proof. Suppose there exists a nonzero limit ordinal. Then the class C � tX :
X is a nonzero limit ordinalu is nonempty and thus

�
C is an ordinal. Consider

some γ P C. We have
�
C � γ by the definition of C. If γ  

�
C, then γ �

�
C

and thus γ �
�
C. Hence

�
C is the least nonzero limit ordinal, i.e.

�
C � ω.

This is a contradiction. Therefore C must be empty.

Lemma 3.31. Let n be a finite ordinal. Then there does not exist a bijection from
n onto a proper subset of n.24

Proof. We will prove this result by using transfinite induction. Since n is a finite
ordinal, we do not need to worry about the limit step.25 The empty set does not have
any proper subsets so the result holds for 0. For the induction hypothesis, assume
that the result holds for some finite ordinal k. To prove the result for k� 1 we shall
assume the negation and derive a contradiction. So suppose that f : k� 1 Ñ E is a

23An immediate consequence of this result is that ω is not a set if and only if every ordinal is a finite
ordinal.

24Notice that we could apply Proposition 3.30 here: since we are assuming that ω is not a set, every
ordinal is a finite ordinal and so we could restate the Lemma for all ordinals.

25Notice that under the assumption that ω is not a set, Proposition 3.30 makes the limit step in
transfinite induction redundant.

22



bijetion for some proper subset E � k � 1. First suppose k R E. Then E � k and
thus E � tfpkqu is a proper subset of k. Hence fæk is a bijection from k to a proper
subset of k. This contradicts the induction hypothesis. Now suppose k P E. Since
f is a bijection, there exists a unique l P k � 1 such that fplq � k. Using PS & S,
define a new function g : k Ñ E � tku by

gpnq �

"
fpnq if n � l,

fpk � 1q if n � l.

g is a bijection because f is a bijection. Thus, by the induction hypothesis, E�tku �
k (otherwise E � tku would be a proper subset of k). Then k � 1 � E. This is a
contradiction because E is a proper subset of k � 1. Since both cases (k R E and
k P E) lead to contradicion, the bijection f cannot exist. Thus the result holds for
k � 1. Therefore, by transfinite induction, we are done.

Proposition 3.32. Let A be a set. Suppose that there exist finite ordinals m,n
such that f : AÑ m and g : AÑ n are bijections. Then m � n.

Proof. If m � n, then either m � n or n � m (Lemma 3.16(iii)). Without loss of
generality, assume m � n. Since both f and g are bijections, f � g�1 : n Ñ m is a
bijection. This contradicts the Lemma. Thus m and n must be equal.

Let X be an infinite set. Using PS & S, define a new set Y � tA � X :
A is finiteu. Define a class function F : Y Ñ Ord by F pAq � n, where n is such that
there exists a bijection AÑ n. F is well-defined by Propostion 3.32. By the Axiom
Schema of Replacement, F pY q is a set. H P Y so 0 P F pY q. Suppose k P F pY q.
Then there exists a set B P Y such that there exists a bijection B Ñ k. Since X
is infinite, X � B � H. Consider some x P X � B. Then there exists a bijection
B Y txu Ñ k � 1. So B Y txu P Y and k � 1 P F pY q. Thus F pY q is inductive.
Therefore, by Lemma 3.27, ω exists (recall the beginning of the proof of (i) Ñ (ii)).
This is contradicts our supposition that ω does not exist. Therefore ω must exist.

[(iii) Ñ (i)] Assume that ω is a set.

This implication is refreshingly easy to prove. Since ω is an ordinal, H P ω.
Since ω is a limit ordinal, we have that, for every α, α   ω implies α � 1   ω
(Lemma 3.26). Thus ω is inductive.

Well, the reader may well wish to sit back and have a cup of tea after all that.
What we have shown is that in ZF�inf, the ordinals are precisely the von Neumann
ordinals, i.e. Ord � ω (as classes). This makes life a lot easier: for example, we
only need to consider N -induction; that is, we can ignore the limit step in transfinite
induction.

We shall now develop operations on the (von Neumann) ordinals. To do this,
we need to develop recursion in ZF�inf. Usually, i.e. in ZF with inf, one developes
transfinite recursion, but since all ordinals in ZF�inf, we only need a weaker form:

Theorem 3.33 (Recursion). Let β P Ord and let G be a class function defined on
Ord. Then there is a unique class function F defined on Ord such that F p0q � β
and F pα� 1q � GpF pαqq for all α P Ord.

Proof. We shall first show that F is defined on all of Ord. Let γ be the least Ord
such that F is not defined at γ (such a γ exists because   is a well-ordering of Ord).
Then, since we know that F is defined at 0, γ � δ� 1 for some δ P Ord (recall that
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in ZF�inf all ordinals are finite). But then F is defined at δ, and thus it is also
defined at γ, since F pγq � F pδ� 1q � GpF pδqq. This is a contradiction and thus no
such γ exists. Thus F is defined on all of Ord.

We now show that F is unique. Suppose that F 1 is another such function. Let
ξ be the least ordinal such that F 1pξq � F pξq. Since ξ � 0, ξ � ε � 1 for some
ε P Ord. But then F 1pεq � F pεq and so F 1pξq � F 1pε� 1q � GpF 1pεqq � GpF pεqq �
F pε� 1q � F pξq, which is a contradiction and thus no such ξ exists.

Lastly, by the Axiom of Replacement we know that each F pαq is indeed a set.

We can use recursion to define operations on ordinals:

Definition 3.34. Let α P Ord. We define addition, multiplication, and exponenti-
ation as follows:

(i) Addition: α� 0 � α; α� pβ � 1q � pα� βq � 1, for all β.

(ii) Multiplication: α � 0 � 0; α � pβ � 1q � pα � βq � α, for all β.

(iii) Exponentiation: α0 � 1; αβ�1 � αβ � α, for all β.

To help our understanding, let us explicitly show how we used recusrion to define
addition on Ord. In this case, the β from Theorem 3.33 is α and the function G is
given by Gpγq � γ � 1 for all γ P Ord.

The operations defined in Definition 3.34 have some basic properties:

Lemma 3.35. Let α, β, γ P Ord be arbitrary. Then:

(i) pα� βq � γ � α� pβ � γq;
(ii) α� β � β � α;
(iii) α � pβ � γq � α � β � α � γ;
(iv) pα � βq � γ � α � pβ � γq;
(v) α � β � β � α;
(vi) α � 1 � α;
(vii) α   β Ñ α� γ   β � γ;
(viii) pα   β ^ 0   γq Ñ α � γ   β � γ; and
(ix) α   β Ñ Dγ pα� γ � βq.

Proof. These are all proved by induction. Let us explicitly prove (iii), (v), and (ix).
(iii) We shall prove this by induction on γ. The case is trivial for γ � 0. Suppose

that the formula holds for some γ. Then

α � pβ � pγ � 1qq � α � ppβ � γq�q (definition)
� α � pβ � γq � α (definition)
� α � β � α � γ � α (induction hypothesis)
� α � β � α � pγ � 1q (definition).

So we are done.
(v) We shall prove this by induction on γ. The case for γ � 0 is trivial. Suppose

that the formula holds for some γ. Then

pα � βq � pγ � 1q � pα � βq � γ � α � β (definition)
� α � pβ � γq � α � β (induction hypothesis)
� α � pβ � γ � βq (part (iii))
� α � pβ � pγ � 1qq (definition).
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So we are done.
(ix) We shall prove this by induction on β. The case for β � 0 holds vacuously.

Suppose that the formula is true for some β. Let α   β� 1. Then α ¤ β. If α � β,
then take γ � 1. If α   β, then by the induction hypothesis there exists γ such
that α� γ � β. Thus α� pγ � 1q � pα� γq � 1 � β � 1 and we are done.

We are now ready to move on to the main area of this essay.

4 Interpretations

4.1 Interpretations via the ordinal interpretation

We have now arrived at the main thrust of this essay; all our previous work has
been so that we can start talking about interpreting one formal language in another.
Informally, an interpretation of a theory T1 in a theory T2 is a way of talking about
T1 in T2, in such a way that T2 can prove the axioms of T1. We do this by interpreting
formulae in T1 by formulae in T2. We will build up to a rigorous defintion of an
interpretation by going through some background theory, using the so-called ordinal
interpretation as a case study. In Subsection 3.2 we developed the ordinals, which
turned out to be the von Neumann ordinals; let us recall their definition:

0 � H, 1 � t0u, 2 � t0, 1u, . . . , n � t0, 1, 2, . . . , n� 1u, . . . .

By the very way we’ve labelled them with natural numbers suggests that we can
talk about PA in ZF�inf. And indeed we can: we have already defined addition and
multiplication of ordinals and showed, interpreting the variables as ordinals and �,
�,  , 0, 1 naturally, that (Ax1)–(Ax15) and the induction schema from Subsection
3.1 hold for the finite ordinals (see Theorem 3.25 and Lemma 3.35). This brings us
to an important point: if we are to interpret a theory T1 in a theory T2, we need
to be able to restrict the domain of quantification of the interpretation of T1 in T2.
So, in our example of interpreting PA in ZF�inf via the ordinals, we need to be
able to restrict the interpretation of PA to the ordinals; we don’t want to quantify
over arbitrary sets. The way we do this is to introduce a uninary predicate ‘Dom’
(read ‘domain’), specifying that every theory include the axiom @xDompxq. This
doesn’t change anything in the theory itself: it simply says that every element is
in the domain of the language, which was the case anyway. But given a theory T1,
we can use the interpretation of DomT1 in T2 to correctly restrict the domain of
quantification. So, in our running example of the ordinal interpretation, we would
interpret the predicate DomPApxq in ZF�inf to be x P Ord. We then define the
interpretation of the PA-formula @xϕpxq in ZF�inf to be

@xpx P Ord Ñ ϕ1pxqq,

where ϕ1 is the interpretation of ϕ in ZF�inf. Similarly we interpret Dxϕpxq to be

Dxpx P Ord^ ϕ1pxqq.

Okay, so we’ve dealt with quantifiers. But what formulae in general? Well, first
we define the interpretations of atomic T1-formulae in T2 and then we extend to
complex formulae via the natural, logic-preserving way. More specifically, if ϕ and
ψ are T1-formulae with interpretations ϕ1 and ψ1 in T2 respectively, then we define
the interpretations of

 ϕ, ϕ_ ψ, ϕ^ ψ, ϕÑ ψ, ϕØ ψ
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to be
 ϕ1, ϕ1 _ ψ1, ϕ1 ^ ψ1, ϕ1 Ñ ψ1, ϕ1 Ø ψ1

repectively. So, just as we can define a linear map between vector spaces by specify-
ing how it acts on the elements of a basis and then extending linearly, we can define
an interpretation by specifying how it acts on atomic formulae and then ‘extending
logically’. In this respect it is similar to how we defined syntax. This technique is
often called ‘induction on (the complexity of) formulae’. We can apply this tech-
nique because we specified that both of our theories T1 and T2 be first-order, and
so they are written in the same underlying logical language. In our example, there
are only a few atomic formulae that we have to deal with, namely 0, 1, x � y, x�y,
x � y, and x   y. These are interpreted as we suggested above:

0 is interpreted as H;
1 is interpreted as tHu;

x � y is interpreted as x � y;
x� y is interpreted as x�o y; and
x � y is interpreted as x �o y;

where the subscript ‘o’ in ‘�o’ and ‘�o’ is to emphasise that the operations are on
ordinals (the interpretation is so natural that the notations are already the same!).
Notice that � in PA is interpreted as � in ZF�inf; this will always be the case in this
essay, i.e. identity in T1 will always be interpreted as identity in T2. Interpretations
where this is not the case are studied,26 but we will not be dealing with them.

We shall move on to the next subsection, where we shall give a much more
rigorous definition of an interpretation.

4.2 Interpretations: a rigorous definition and a cate-
gorical perspective

In this subsection we shall give a rigorous definition on an interpretation and then
build up some more terminology. We shall then quickly review these definitions
from a categorical point of view; those readers who are unfamiliar with category
theory can happily skip this last part as it is not key to the theme of this essay. Our
definitions in this subsection are based on those in [8] and [12]. We shall also adopt
their convention in using lower-case Fraktur letters to denote interpretations.

Definition 4.1. Let L1 and L2 be first-order languages and let T1 and T2 be L1-
and L2-theories respectively. An interpretation of T1 in T2 is a map f : T1 Ñ T2

given by mapping atomic formulae ϕpx1, x2, . . . xnq to ϕpx1, x2, . . . xnq
f in the same

free variables and then extending logically to the whole of T1; that is, for atomic
T1-formulae ϕ and ψ, we set

(i) p ϕqf to be  pϕqf;

(ii) pϕ^ ψqf to be ϕf ^ ψf;

(iii) pϕ_ ψqf to be ϕf _ ψf;

(iv) pϕÑ ψqf to be ϕf Ñ ψf;

(v) pϕØ ψqf to be ϕf Ø ψf;

(vi) p@xϕpxqqf to be @xpDompxq Ñ ϕpxqfq; and

26See the cardinal interpretation in [12], for example.
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(vii) pDxϕpxqqf to be DxpDompxq ^ ϕpxqfq.

We also specify that T2 $ σ for every axiom σ of T1 and that T2 $ DxDompxqf.

The following propostion is an immediate consequence of this defition:

Proposition 4.2. Let f : T1 Ñ T2 be an interpretation and let η be some T1-
sentence. If T1 $ η then T2 $ ηf.

We shall now define what it means for two interpretations to be equivalent:

Definition 4.3. Let f, g : T1 Ñ T2 be interpretations. f and g are equivalent iff
T2 $ @xpϕpxq

f Ø ϕpxqgq for every T1-formula ϕ.

We now define the indentity interpretation and composition of interpretations:

Definition 4.4. The identity interpretation of a theory T is the interpretation
1T : T Ñ T defined by setting ϕ1T to be ϕ for all T -formulae ϕ.

Definition 4.5. Let f : T1 Ñ T2 and g : T2 Ñ T3 be interpretations. We define
gf : T1 Ñ T3 by setting ϕpgfq to be pϕfqg.

We shall now define what it means for two interpretations to be inverse to one
another:

Definition 4.6. Let f : T1 Ñ T2 and g : T2 Ñ T1 be interpretations. f and g are
inverse to one another iff gf is equivalent to 1T1 and fg is equivalent to 1T2 .

We are now able to develop some terminology regarding interpretability between
theories, which we take from [12]:

Definition 4.7. Let T1 and T2 be theories. T1 is interpretable in T2 iff there
exists an interpretation T1 Ñ T2. T1 are T2 mutually interpretable iff there exist
interpretations T1 Ñ T2 and T2 Ñ T1. T1 are T2 bi-interpretable iff there exist
inverse interpretations T1 Ñ T2 and T2 Ñ T1.

Notice that bi-interpretability is a stronger condition than mutually interpretability.
We shall now briefly describe how we can view interpretations in a categorical

sense. As we said in the introduction to this subsections, readers not familiar with
category theory can happily move on to the next section. We can view theories as
a category by regarding theories as objects and interpretations as morphisms, with
identity morphisms and composition defined as in Definition 4.2. Two morphisms
are defined to be equal in this category iff they are equaivalent in the sense given
in Definition 4.3. Associativity is clear:

Lemma 4.8. Let f : T1 Ñ T2, g : T2 Ñ T3, and h : T3 Ñ T4 be interpretations. Then
fpghq � pfgqh.

We can now view the defintions given in 4.7 in a categorical sense: T1 is interpretable
in T2 iff there exists a morphism T1 Ñ T2; T1 are T2 mutually interpretable iff there
exist morphisms T1 Ñ T2 and T2 Ñ T1; and T1 are T2 bi-interpretable iff there
exists an isomorphism T1 Ñ T2.
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5 The Ackermann interpretation

The Ackermann interpretation is an interpretation of ZF�inf in PA. It was first
discovered by Wilhelm Ackermann in 1937 ([1]). The idea is beautifully simple:
given two numbers m and n, we define m to be a member of n if the mth digit in
the binary expansion of n is 1. The fact that this is indeed an interpretation isn’t
quite so remarkable as it at first might seem: if we wished to programme a computer
to work with finite sets, we would probably code sets as a sequence of 1’s and 0’s,
each place in the sequence standing for an object, a 1 indicating that the object
is in the set and a 0 indicating that it is not. Before we get into the business of
actually showing that the Ackermann interpretation is indeed an interpretation, let
us go though some examples informally, working in N, the standard model of PA.

Consider the number 13. In binary, 13 is written as 1101 (13 � 1 � 20 � 0 �
21 � 1 � 22 � 1 � 23). The 0th digit in this expansion is 1, the 1st is 0, the 2nd is
1, and the 3rd is 1; all higher digits are of course 0. Thus, under the Ackermann
interpretation, 0, 2, and 3 are contained in 13. Now consider the number 3. In
binary, 3 is expressed as 11 and thus, under the Ackermann interpretation, 0 and 1
are members of 3. One might then ask what the union of 3 and 13 is. Well, we know
that it precisely contains 0, 1, 2, and 3, and so in binary it is 1111, which is equal
to 15 (� 1 � 20 � 1 � 21 � 1 � 22 � 1 � 23) in the usual Indo-Arabic notation. But what
about power sets? We can calculate these too; let us do this for 13. As we saw,
the elements of 13 are 0, 2, and 3. Thus the subsets of 13 are 0 (this is vacuously a
subset), t0u, t2u, t3u, t0, 2u, t0, 3u, t2, 3u, and t0, 2, 3u; these, under the Ackermann
interpretation, are equal to 0, 1, 100, 1000, 101, 1001, 1100, and 1101 respectively,
which, in turn, are equal to 0, 1, 4, 8, 5, 9, 12, and 13 respectively as Indo-Arabic
numerals. Thus, in binary, the power set of 13 is 11001100110011 (� 13107 as an
Indo-Arabic number).

Okay, so we’ve seen informally how the Ackermann interpretation works. Now
we need to get down and show that this is indeed an interpretation of PA in ZF�inf.
To do this, we shall use the machinery that we developed in Subsection 3.1 to prove
that each of the interpretations of the axioms of ZF�inf are provable in PA. A lot of
the following formulae are taken from [5], although our interpretation of the power
set is original.

We shall start by saying in PA that the xth digit in the binary expansion of y is
1. We shall do this by introducing a binary function, A (for Ackermann),27 which,
informally, is the following:

Apx, yq �

#
1 if xth digit in the binary expansion of y is 1
0 if xth digit in the binary expansion of y is 0.

We can define this in PA by defining its graph:

Apx, yq � z Ø rppDn   y Dm   2xpy � 2x�1n� 2x �mqq ^ z � 1q

_ p pDn   y Dm   2xpy � 2x�1n� 2x �mqq ^ z � 0qs.

This isn’t nearly as bad as it looks: it really is what the reader himslef/herself
would write if they sat down and thought about it. With this new function in
hand, we can define the Ackermann interpretation formally, which we shall denote
a : ZF�inf Ñ PA:

px P yqa is Apx, yq � 1; and
Dompxqa is Dom.

27Don’t confuse this with the Ackermann function on p. 68 of [7].
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This is enough to define a, since P and Dom are the only relation symbols in LP. Let
us now prove our first axiom, Extensionality. Under the Ackermann interpretation,
the Axiom of Extensionality is

@x@yp@zppz P xqa Ø pz P yqaq Ñ x � yq,

which is
@x@yp@zpApz, xq � 1 Ø Apz, yq � 1q Ñ x � yq.

Lemma 5.1. PA $ @x@yp@zpApz, xq � 1 Ø Apz, yq � 1q Ñ x � yq.

Proof. We shall prove this by induction on x. The case x � 0 is trivial. Suppose
that the formula holds for some x ¡ 0. We want to show that the formula holds
for x � 1. Suppose Apz, x � 1q �Ø Apz, yq � 1 for some arbitrary y and z. Then
Apz, xq � Apz, y � 1q, which implies x � y � 1 by the induction hypothesis (since z
is arbitray) and so x� 1 � y. So we are done.

The interpretation of the Axiom of the Empty Set is easy to prove:

Lemma 5.2. PA $ Dx@ypApy, xq � 0.

Proof. Simply take H to be 0: 0 has no elements because  Dn   0.

Before we cover any more axioms, we need to define two preliminary functions:
µpxq is the leftmost postion in the binary expnasion of x to be occupied by a 1, and
kpxq :�

°
y¤µpxqApy, xq. µ is fairly tricky to define in PA, so we will simply use it;

the details can be found in [5].
We now come to the Axiom of Pairing. To prove its interpretation in PA, it is

enough to find tx, yua. This is quite straightforward:

tx, yua � 2x � p1� λpx, yqq2x,

where λ is the function that returns a 1 if x and y are equal and a 0 if they are not
equal, which we can define in PA by specifying its graph:

λpx, yq � z Ø px � y ^ z � 1q _ p x � y ^ z � 0q.

We now come to the Power Set Axiom. To define the interpretation of the power
set, we will need to define a preliminary function first. Informally, we define γpx, yq
by

γpx, yq �

#
1 if x is a subset of y under a,
0 if x is not a subset of y under a.

But how do we define this in PA? Well, first notice that x is a subset of y under a

iff
@z ¤ µx pApz, xq ¤ Apz, yqq.

Thus we can define γ in PA by

γpx, yq � 1�
¸

z¤µx

pApz, xq�Apz, yqq.

We can now define Ppxqa by ¸
z¤kpxq

2zγpz, xq.

Let us breifly explain this formula. What we are doing here is going through all the
possbile powers of 2, i.e. all the possible elements, and putting a 1 if z is a subset
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of x and a 0 if it is not. This is a nice approach and we shall use it for the next
three axioms.

We now come to Union. As with the Power Set, we need a preliminary function,
which we define informally as

δpx, yq �

#
1 if DzpApz, yq � 1^Apx, zq � 1q,
0 if otherwise.

In other words, δpx, yq tells us whether x is in the union of y. We can define δ in
PA:

δpx, yq � p1� p1�
¸

z¤µy

Apx, zqApz, yqqq

We can now use this function to define p
�
xqa by¸

z¤µx

2zδpz, xq.

We now come to Separation, which will require us to define the characteristic
function of a formula in PA. Informally, for a formula ϕ,

χϕpxq �

#
1 if ϕpxq,
0 if  ϕpxq.

We define this in PA by specifying its graph:

χϕpxq � z Ø pϕpxq ^ z � 1q _ p ϕpxq ^ z � 0q.

We can now define tz P x : ϕpzqua by¸
z¤µx

2zApz, xqχϕapzq.

We now come to the last of the Axioms that we can prove using this method,
Replacement. For a functional formula F in ZF�inf and a set x, we define tF pzq :
z P xua by¸

z¤µx

Apz, xq2F pzqap1� pp
¸

y¤z�1

Apy, xqλpF pzqa, F pyqaqq� λpz, 0qqq.

This really does look awful, so let’s go through and informally explain each of the
parts of the formula. The first part,

°
z¤µxApz, xq2

F pzqa , goes through and puts in
each F pzqa as an element. This is not enough though, for the function might not be
injective. This is where the next part comes in: For each z, we look at everything
less than it, checking if it’s in x and whether its image under F is equal to that of
z. If the images are equal, then we get a 1, which means we multiply 2F pzqa by a 0
(since 1 � 1 � 0); otherwise we multiply it by 1. Of course, we need to inculde at
least one element for every element in the image of F , and if z � 0 then we put it’s
image in regardless – this is done by the �λpz, 0q term.

We now have two axioms left:  Infinity and Foundation. We shall prove the
interpretation of the Axiom of Foundation first.

The Axiom of Foundation is

@xpx � HÑ Dzpz P x^ z X x � Hqq.
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So, before we can state the interpretation of Foundation under Ackermann, we’d
first better work out the interpretation of intersection. Thankfully, this is straight-
forward:

pxX yqa �
¸

z¤µpxq�µpyq

2zApz, xqApz, yq.

So the interpretation of the Axiom of Foundation is

@xpx ¡ 0 Ñ DzpApz, xq � 1^
¸

z¤µpxq�µpyq

2zApz, xqApz, yq � 0qq. (6)

We can prove this in PA:

Lemma 5.3. PA $ p6q.

Proof. Take z to be the minimal z such that Apz, xq � 1. If z � 0 then we are done,
so assume that z ¡ 0. Then, by Lemma 5.4 below, if Apy, zq � 1, then y   z and
so Apy, xq � 0 because z is minimal. Thus pz X xqa � 0 and we are done.

Lemma 5.4. PA $ @x@ypApx, yq � 1 Ñ x   yq.

Proof. Suppose that there exist x and y such that Apx, yq � 1 and y ¤ x. Then
there exist n   y and m   2x such that

y � m2x�1 � 2x � n. (7)

But y ¤ x and so y   2y ¤ 2x, which contradicts 7. Thus no such x and y can
exist.

We now only have the interpretation of the negation of the Axiom of Infinity to
prove. We can do this by using the ordinal interpretation. Suppose that there was
an infinite set, i.e. z such that for every x there exists y ¡ x such that Apy, zq � 1.
Then the interpretation of z in the ordinals would be an infinite set, contradicting
Theorem 3.29. Thus no such set z can exist.

Well, now that we have shown that the Ackermann interpretation is indeed an
interpretation of ZF�inf, we shall now consider its inverse.

6 The inverse Ackermann interpretation

We have shown in the last two sections that ZF�inf and PA are mutually inter-
pretable; that is, we can interpret PA in ZF�inf (via the ordinals) and we can
interpret ZF�inf in PA (via the Ackermann interpretation). But are ZF�inf and
PA bi-interpretable, i.e. can we find interpretations ZF�infÑ PA and PAÑ ZF�inf
that are inverse to one another? Well, the answer is sort of. If we wish to find a
bi-interpretation, we need to add an extra axiom to ZF�inf, the Axiom of Transitive
Closure (TC for short); we shall explain what this is shortly. With this new axiom,
ZF�inf+TC (that is ZF�inf with the extra axiom TC) and PA are bi-interpretable.
We shall abrreviate ZF�inf+TC to ZF�inf�.

Before we actually get to the bi-interpretation, we need to cover some back-
ground theory. We start by saying what TC actually is:

Axiom of Transitive Closure. Every set is contained in a transitive set. For-
mally:

@xDypx � y ^ Transpyqq,
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where Transpxq is the relation that says that x is transitive:

@zpz P xÑ z � xq.

This axiom is stronger than one might have initially thought: We can use it to define
the transitive closure of x, the smallest transitive set containing x, by taking the
intersection of all transitive sets containing x. The transitive closure of x is unique
by Extensionality and is denoted TCpxq. Clearly the existence of TCpxq implies the
axiom TC. Thus TC is equivalent to the statement that every set has a transitive
closure:

@xDypy � TCpxqq.

Now, the reader may ask why we need to add a new axiom at all: can we not prove
TC from the other axioms of ZF�inf? The answer is no: there exist models of
ZF�inf in which TC fails. We shall not offer a proof of this (see [8] for a sketch
proof), although we will run through the basic idea. Readers not familiar with more
advanced set theory and model theory may wish to skip this explanation and simply
take it as read that ZF�inf&TC. The idea is to take a model of ZF�inf and from
it make a permutation model in which TC fails. Specifically, consider the set of
hereditary finite sets Vω and involute all singletons tx Y txuu of finite ordinals x
with x; that is, define a function F that sends x to txY txuu, txY txuu to x, and
leaves everthing else. We then define a new membership relation PF by x PF y iff
x P F pyq. It can be shown that pVω, PF q ( ZF�inf but pVω, PF q (  TC; specifically,
the empty set has no transitive closure in this model.

We shall now explain why we need TC in the first place. TC allows us to
prove something called P-induction, which is an extension of transfinite induction
to all transitive classes, where a transitive class is a class all of whose elements are
transitive. Before we state and prove P-induction, we need a lemma:

Lemma 6.1. ZF�inf� $ Every nonempty class C has an P-minimal element.

Proof. Consider some x P C. If xXC � H, then x is an P-minimal element and we
are done, so assume x X C � H. Let y � TCpxq X C. Since x � TCpxq, y � H.
Thus, by the Axiom of Regularity, there exists z P y such that z X y � H. Suppose
zXC � H; let w P zXC. Then, since TCpxq is transitive and z P TCpxq, w P TCpxq.
Thus w P z X TCpxq X C � z X y, which is contradiction because z X y � H. Thus
z is an P-minimal element of C.

We can now prove P-induction:

Theorem 6.2. Let ϕ be an LP-formula. Then ZF�inf� $

@xp@z P xpϕpzq Ñ ϕpxqqq Ñ @yϕpyq.

Proof. Consider the class C � tx :  ϕpxqu. If C is nonempty, then it has an
P-minimal element w by Lemma 6.1 above. w � H because the implication

@z P Hpϕpzq Ñ ϕpHqq

holds vacuously and so we have ϕpHq. So consider some x P w. Since w is minimal,
we have ϕpxq. But x was chosen arbitrarily and so the hypothesis holds, implying
ϕpwq. This is a contradiction and thus C must be empty.

In fact, the converse holds; that is, P-induction implies TC:

Theorem 6.3. ZF�inf $P -inductionÑ TC.
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Proof. Consider some x such that every z P x has a transitive closure. Then the set¤
tz : Dy P xpz � TCpyqqu Y x

is transtive and has x as a subset. Thus we are done by P-induction. (Recall that
the existence of TCpxq is equivalent to the existence of a transitive set containing
x as a subset.)

Putting Theorems 6.2 and 6.3, we get:

Theorem 6.4. ZF�inf $P -inductionØ TC

An observant reader will have noticed that we still haven’t actually answered the
question of why we need TC in the first place. Well, it turns out that PA $ TCa

(see [8] for a proof), and so if b : PA Ñ ZF�inf is an inverse to the Ackermann
interpretation, then ZF�inf $ TC because TCpabq � TC, since a and b are inverse.
But this is a contradiction, since ZF�inf cannot prove TC. Thus any inverse to the
Ackermann interpretation must be from PA to ZF�inf�.

Using P-induction, we can develop a new type of recursion, which will be essential
to us when we construct the inverse Ackermann interpretation.

Theorem 6.5 (P-recursion). Let G be a function defined on V and let y be a
set. Then there exists a unique function F defined on V such that F pHq � y and
F pxq � GpFæxq for all x.

Proof. The proof is the same as that of Theorem 3.33, this time using P-induction
instead of ordinal induction.

Notice that for a class of ordinals, ordinal induction and recursion are the same as
P-induction and P-recursion.

Now that we have covered all this theory, we can now go about constructing an
inverse to the Ackermann interpretation. Our strategy will be to use the ordinal
interpretation. We can’t use it in its current form because it is not inverse to the
Ackermann interpretation: for example, under Ackermann, t0, 1u is interpeted as
1 � 1 � 1 p� 1 � 21 � 1 � 20q in PA; but under the ordinal interpretation, 1 � 1 � 1
is interpreted as t0, 1, 2u in ZF�inf�. However, we can adapt it. The idea is to
construct a bijection between the universe V , the class of all sets, and the ordinals.
We then ‘compose’ this bijection with the ordinal interpretation to get an inverse to
the Ackermann interpretation. Of course we can’t just construct any old bijection:
we need to do it carefully. The idea is that we construct a bijection that looks like
the Ackermann interpretation. If we call our bijection p, we informally define it
recursively by

ppxq �
¸
yPx

2ppyq. (8)

We shall sketch a proof later as to why this does in fact lead to an inverse to the
Ackermann interpretation.

So far we have been very informal, so we’d better start constructing p more
rigorously. We follow a lot of the working in [8]. Firstly, we need to define summation
over ordinals in ZF�inf�; we do this by using ordinal recursion:

Definition 6.6. For a set of ordinals x, define
°̂

x on Ord as follows: Let
°̂

xp0q � 0
and let

ˆ̧
x
pα� 1q �

#°̂
xpαq if α� 1 R x,°̂
xpαq � pα� 1q if α� 1 P x.

We then define
°
pxq �

°̂
xp
�
xq.
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This function
°
pxq allows us to sum over all elements of x (using ordinal addition);

informally: ¸
pxq �

¸
yPx

y.

We can now define the bijection we want. This time we use P-recursion:

Definition 6.7. Define a class function p : V Ñ Ord by

ppxq �
¸
pt2ppyq : y P xuq.

This is precisely the formal definition of what we defined informally in (8). This is
indeed a bijection:

Proposition 6.8. ZF�inf� $ p is a bijection.

Proof. First let us prove injectivity. We shall do this by showing that p is strictly
increasing using P-induction. Suppose that p is strictly increasing for all y P x.
Now, since all ordinals in ZF�inf� are finite, x � z � 1 for some z P x. For any
ordinal α, 2α ¡ α (this is proved by a simple induction and so 2ppzq ¡ ppzq. Thus

ppxq � ppz � 1q

�
¸
pt2ppyq : y P z � 1uq

�
¸
pt2ppyq : y P zuq � 2ppzq

¡ ppzq.

So we are done.
We shall now prove surjectivity by ordinal induction. Suppose that p is sujective

for all y   x. Since all ordinals are finite, x � z � 1 for some z   x. Then, by the
induction hypothesis, there exists some w such that ppwq � z. Then

ppw Y t0uq � ppwq � pp0q
� y � 1
� x.

So we are done.

We can now define the interpretation b : PA Ñ ZF�inf�:

Definition 6.9. We define b by setting Dompxqb to be ‘Dompxq’; px � yqb to be
‘x � y’; px   yqb to be ‘ppxq   ppyq’; px� yqb to be ‘ppxq � ppyq’; and px � yqb to be
‘ppxq � ppyq’, where the target relation and operations are the usual ordinal ones.

Since the ordinal interpretation is indeed an interpretation, b is an interpretation
Proposition 6.8. It remains to prove that a and b are inverse to each other. We
shall only sketch the proofs:

Lemma 6.10. ab � 1PA.

Sketch Proof. Let ϕ1 denote ϕab. Clearly 01 � 0 and 11 � 1. The other non-logical
symbols are then formally proved to be preserved by induction. Informally, the
non-logical symbols are preserved because p sends x to the set that it encodes under
the Ackermann interpretation.

Lemma 6.11. ba � 1ZF�inf�.
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Sketch Proof. Denote px P yqba by x P1 y. It suffices to show that ZF� inf� $
@x@ypx P y Ø x P1 yq. This is done by formally by P-induction. Informally, the
implication x P y Ñ x P1 y holds because of the way we constructed p: ppxq is
effectively the Ackermann epression of x, but in the ordinals rather than in PA.
The same goes for the converse, since we can adapt the proof of Extensionalitya in
PA.

Putting Lemmas 6.10 and 6.11, we get:

Theorem 6.12. a : ZF� inf� Ñ PA and b : PA Ñ ZF� inf� are inverse to one
another.

7 Interpretations and bounded formulae: a

brief vista

We shall now very briefly talk about the result proved in [12]. We first need to
define bounded formulae:

Definition 7.1. A PA-formula is bounded iff all quantifiers in the formula are of
the form @x   y or Dx   y, where ‘@x   y ϕpxq’ and ‘Dx   y ϕpxq’ are abbreviations
for ‘@xpx   y Ñ ϕpxqq’ and ‘Dxpx   y ^ ϕpxqq’ respectively. Similarly, a ZF�inf-
formula is bounded if all the quantifier in the formula are of the form @x P y or Dx P y,
where ‘@x P y ϕpxq’ and ‘Dx P y ϕpxq’ are abbreviations for ‘@xpx P y Ñ ϕpxq’ and
‘Dxpx P y ^ ϕpxqq’ respectively.

Equipped with the notation of a bounded formula, we can define some subsytems
of PA and ZF�inf�.

We denote the set of all PA-formulae that are equivalent to a bounded PA-
formula by ∆0.28 We then define ‘I∆0’ to be the subsystem of PA consisting of
the axioms (Ax1)–(Ax15) from Subsection 3.1 and the induction schema restricted
to ∆0-formulae. It turns out that one cannot construct exponentiation as a total
function in I∆0, and so we add an axiom ‘exp’ that states that 2x is a total function.

We construct a subsystem of ZF�inf� called Euclidean Arithmetic (‘EA’ for
short) by restricting the Separation and Replacement Axiom schemata to bounded
formulae.29 We then add another axiom called the Weak Hierarchy Principle (or
‘WHP’ for short), the statement of which we shall not discuss due its prerequisite
background theory, to obtain a new system denoted ‘EA�’.

Pettigrew then shows that the theories I∆0 � exp and EA� are bi-interpretable.
This result is interesting because it sheds further light on the respective strengths
of systems finite set theory and arithmetic, and thus in turn on the foundations of
mathemtics.

Research into interpretations between arithmetic and finite set theory is ongoing
as this essay is being written; indeed, [11] will be published later this year. One
important outstanding question is the set-theoretical anlogue of I∆0. At present no
one has even conjectured an answer.

28This notation comes from the arithmetic hierarchy, which we will not discuss; the reader is referred
to [7].

29This was orignally constructed by Mayberry (see [10]); details can also be found in [11].
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